ترغب بنشر مسار تعليمي؟ اضغط هنا

Persistence of characteristics of an ordered flux line lattice above the second peak in $Bi_2Sr_2CaCu_2O_{8+ delta}$

97   0   0.0 ( 0 )
 نشر من قبل Alain Pautrat
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report Small Angle Neutron Scattering measurements of the flux lines lattice (FLL) in $Bi_2Sr_2CaCu_2O_{8+ delta}$. As previously reported, the scattered intensity decreases strongly when the magnetic field is increased, but it remains measurable far above the second peak. The direct observation of Bragg peaks proves that the characteristics of a lattice are still present. No structural features related to a symmetry breaking, such as a liquid like or an amorphous state, can be observed. However, the associated scattered intensity is very low and is difficult to explain. We discuss the coexistence between two FLL states as a possible interpretation.

قيم البحث

اقرأ أيضاً

We present a detailed study on the behaviour of vortex cores in Bi_2Sr_2CaCu_2O_{8+delta} using scanning tunneling spectroscopy. The very irregular distribution and shape of the vortex cores imply a strong pinning of the vortices by defects and inhom ogeneities. The observed vortex cores seem to consist of two or more randomly distributed smaller elements. Even more striking is the observation of vortex motion where the vortex cores are divided between two positions before totally moving from one position to the other. Both effects can be explained by quantum tunneling of vortices between different pinning centers.
We have obtained isofield curves for the square root of the average kinetic energy density of the superconducting state for three single crystals of underdoped YBa_2Cu_3O_{7-x}, an optimally doped single crystal of Bi_2Sr_2CaCu_2O_{8+delta}, and Nb. These curves, determined from isofield magnetization versus temperature measurements and the virial theorem of superconductivity, probe the order parameter amplitude near the upper critical field. The striking differences between the Nb and the high-T_c curves clearly indicate for the latter cases the presence of a unique superconducting condensate below and above T_c.
We report a c-axis-polarized electronic Raman scattering study of Bi_2Sr_2CaCu_2O_{8+delta} single crystals. In the normal state, a resonant electronic continuum extends to 1.5 eV and gains significant intensity as the incoming photon energy increase s. In the superconducting state, a coherence 2Delta peak appears around 50 meV, with a suppression of the scattering intensity at frequencies below the peak position. The peak energy, which is higher than that seen with in-plane polarizations, signifies distinctly different dynamics of quasiparticle excitations created with out-of-plane polarization.
We study sharp low-energy resonance peaks in the local density of states (LDOS) induced by Zn impurities or possible Cu vacancies in superconducting Bi_2Sr_2CaCu_2O_{8+delta}. The measured structure of these near-zero-bias resonances is quantitativel y reproduced by an extended impurity potential without invoking internal impurity states or sophisticated tunneling models. The Zn potential extends at least to the nearest-neighbor Cu sites, and the range of order parameter suppression extends at least 8 AA away from the Zn site. We further show that the local spin susceptibilities near Zn impurities increase rather than decrease with decreasing temperature in the superconducting state due to the sharp increase of LDOS near the Fermi level.
We have developed a material specific theoretical framework for modelling scanning tunneling spectroscopy (STS) of high temperature superconducting materials in the normal as well as the superconducting state. Results for $Bi_2Sr_2CaCu_2O_{8+delta}$ (Bi2212) show clearly that the tunneling process strongly modifies the STS spectrum from the local density of states (LDOS) of the $d_{x^2-y^2}$ orbital of Cu. The dominant tunneling channel to the surface Bi involves the $d_{x^2-y^2}$ orbitals of the four neighbouring Cu atoms. In accord with experimental observations, the computed spectrum displays a remarkable asymmetry between the processes of electron injection and extraction, which arises from contributions of Cu $d_{z^2}$ and other orbitals to the tunneling current.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا