ﻻ يوجد ملخص باللغة العربية
We have developed a material specific theoretical framework for modelling scanning tunneling spectroscopy (STS) of high temperature superconducting materials in the normal as well as the superconducting state. Results for $Bi_2Sr_2CaCu_2O_{8+delta}$ (Bi2212) show clearly that the tunneling process strongly modifies the STS spectrum from the local density of states (LDOS) of the $d_{x^2-y^2}$ orbital of Cu. The dominant tunneling channel to the surface Bi involves the $d_{x^2-y^2}$ orbitals of the four neighbouring Cu atoms. In accord with experimental observations, the computed spectrum displays a remarkable asymmetry between the processes of electron injection and extraction, which arises from contributions of Cu $d_{z^2}$ and other orbitals to the tunneling current.
We present a detailed study on the behaviour of vortex cores in Bi_2Sr_2CaCu_2O_{8+delta} using scanning tunneling spectroscopy. The very irregular distribution and shape of the vortex cores imply a strong pinning of the vortices by defects and inhom
We report a c-axis-polarized electronic Raman scattering study of Bi_2Sr_2CaCu_2O_{8+delta} single crystals. In the normal state, a resonant electronic continuum extends to 1.5 eV and gains significant intensity as the incoming photon energy increase
We study sharp low-energy resonance peaks in the local density of states (LDOS) induced by Zn impurities or possible Cu vacancies in superconducting Bi_2Sr_2CaCu_2O_{8+delta}. The measured structure of these near-zero-bias resonances is quantitativel
We apply Landau-Ott scaling to the reversible magnetization data of Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$ published by Y. Wang et al. [emph{Phys. Rev. Lett. textbf{95} 247002 (2005)}] and find that the extrapolation of the Landau-Ott upper critical field
We use angle resolved photoemission spectroscopy to probe the electronic excitations of the non-superconducting state that exists between the antiferromagnetic Mott insulator at zero doping and the superconducting state at larger dopings in Bi_2Sr_2C