ترغب بنشر مسار تعليمي؟ اضغط هنا

Ab initio statistical mechanics of surface adsorption and desorption: I. H$_2$O on MgO (001) at low coverage

158   0   0.0 ( 0 )
 نشر من قبل Dario Alf\\`e
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a general computational scheme based on molecular dynamics (m.d.) simulation for calculating the chemical potential of adsorbed molecules in thermal equilibrium on the surface of a material. The scheme is based on the calculation of the mean force in m.d. simulations in which the height of a chosen molecule above the surface is constrained, and subsequent integration of the mean force to obtain the potential of mean force and hence the chemical potential. The scheme is valid at any coverage and temperature, so that in principle it allows the calculation of the chemical potential as a function of coverage and temperature. It avoids all statistical mechanical approximations, except for the use of classical statistical mechanics for the nuclei, and assumes nothing in advance about the adsorption sites. From the chemical potential, the absolute desorption rate of the molecules can be computed, provided the equilibration rate on the surface is faster than the desorption rate. We apply the theory by {em ab initio} m.d. simulation to the case of H$_2$O on MgO (001) in the low-coverage limit, using the Perdew-Burke-Ernzerhof (PBE) form of exchange-correlation. The calculations yield an {em ab initio} value of the Polanyi-Wigner frequency prefactor, which is more than two orders of magnitude greater than the value of $10^{13}$ s$^{-1}$ often assumed in the past. Provisional comparison with experiment suggests that the PBE adsorption energy may be too low, but the extension of the calculations to higher coverages is needed before firm conclusions can be drawn. The possibility of including quantum nuclear effects by using path-integral simulations is noted.

قيم البحث

اقرأ أيضاً

371 - D. Alfe` , M. J. Gillan 2010
We show how the path-integral formulation of quantum statistical mechanics can be used to construct practical {em ab initio} techniques for computing the chemical potential of molecules adsorbed on surfaces, with full inclusion of quantum nuclear eff ects. The techniques we describe are based on the computation of the potential of mean force on a chosen molecule, and generalise the techniques developed recently for classical nuclei. We present practical calculations based on density functional theory with a generalised-gradient exchange-correlation functional for the case of H$_2$O on the MgO~(001) surface at low coverage. We note that the very high vibrational frequencies of the H$_2$O molecule would normally require very large numbers of time slices (beads) in path-integral calculations, but we show that this requirement can be dramatically reduced by employing the idea of thermodynamic integration with respect to the number of beads. The validity and correctness of our path-integral calculations on the H$_2$O/MgO~(001) system are demonstrated by supporting calculations on a set of simple model systems for which quantum contributions to the free energy are known exactly from analytic arguments.
First-principles calculations using density functional theory based on norm-conserving pseudopotentials have been performed to investigate the Cs adsorption on the Si(001) surface for 0.5 and 1 ML coverages. We found that the saturation coverage corr esponds to 1 ML adsorption with two Cs atoms occupying the double layer model sites. While the 0.5 ML covered surface is of metallic nature, we found that 1 ML of Cs adsorption corresponds to saturation coverage and leads to a semiconducting surface. The results for the electronic behavior and surface work function suggest that adsorption of Cs takes place via polarized covalent bonding.
We investigate the adsorption of a single tetracyanoethylene (TCNE) molecule on the silver (001) surface. Adsorption structures, electronic properties, and scanning tunneling microscopy (STM) images are calculated within density-functional theory. Ad sorption occurs most favorably in on-top configuration, with the C=C double bond directly above a silver atom and the four N atoms bound to four neighboring Ag atoms. The lowest unoccupied molecular orbital of TCNE becomes occupied due to electron transfer from the substrate. This state dominates the electronic spectrum and the STM image at moderately negative bias. We discuss and employ a spatial extrapolation technique for the calculation of STM and scanning tunneling spectroscopy (STS) images. Our calculated images are in good agreement with experimental data.
First-principles calculations using density functional theory based on norm-conserving pseudopotentials have been performed to investigate the Mg adsorption on the Si(001) surface for 1/4, 1/2 and 1 monolayer coverages. For both 1/4 and 1/2 ML covera ges it has been found that the most favorable site for the Mg adsorption is the cave site between two dimer rows consistent with the recent experiments. For the 1 ML coverage we have found that the most preferable configuration is when both Mg atoms on 2x1 reconstruction occupy the two shallow sites. We have found that the minimum energy configurations for 1/4 ML coverage is a 2x2 reconstruction while for the 1/2 and 1 ML coverages they are 2x1.
We develop a microscopic approach to the consistent construction of the kinetic theory of dilute weakly ionized gases of hydrogen-like atoms. The approach is based on the framework of the second quantization method in the presence of bound states of particles and the method of reduced description of relaxation processes. Within the approach we developed the first-order perturbation theory over the weak interaction for a system of kinetic equations for the Wigner distribution functions of free fermions of both kinds and their bound states, the hydrogen-like atoms. It is shown that the conditions of low-temperature approximation, of the gas non-degeneracy and the approximation of weak interaction are realistic and can be met in a wide range of temperatures and the densities of the studied system. We obtain dispersion equations for determining the frequency and wave attenuation coefficients in dilute weakly ionized gas of hydrogen-like atoms near the described equilibrium state. In the two-level atom approximation it is shown that in the system there are longitudinal waves of matter polarization and transverse waves with the behavior characteristic of plasmon polaritons. The expressions for the dependence of the frequency and the Landau damping coefficients on the wave vector for all branches of the oscillations detected, are obtained. Quantitative estimations of the characteristics of the elementary perturbations in the system on an example of a weakly ionized dilute gas of Na-23 atoms are presented. The possibility of using the results of the theory developed to describe the properties of a Bose condensate of photons in dilute weakly ionized gas of hydrogen-like atoms is noted and the directions of its generalizations are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا