ﻻ يوجد ملخص باللغة العربية
We present a general computational scheme based on molecular dynamics (m.d.) simulation for calculating the chemical potential of adsorbed molecules in thermal equilibrium on the surface of a material. The scheme is based on the calculation of the mean force in m.d. simulations in which the height of a chosen molecule above the surface is constrained, and subsequent integration of the mean force to obtain the potential of mean force and hence the chemical potential. The scheme is valid at any coverage and temperature, so that in principle it allows the calculation of the chemical potential as a function of coverage and temperature. It avoids all statistical mechanical approximations, except for the use of classical statistical mechanics for the nuclei, and assumes nothing in advance about the adsorption sites. From the chemical potential, the absolute desorption rate of the molecules can be computed, provided the equilibration rate on the surface is faster than the desorption rate. We apply the theory by {em ab initio} m.d. simulation to the case of H$_2$O on MgO (001) in the low-coverage limit, using the Perdew-Burke-Ernzerhof (PBE) form of exchange-correlation. The calculations yield an {em ab initio} value of the Polanyi-Wigner frequency prefactor, which is more than two orders of magnitude greater than the value of $10^{13}$ s$^{-1}$ often assumed in the past. Provisional comparison with experiment suggests that the PBE adsorption energy may be too low, but the extension of the calculations to higher coverages is needed before firm conclusions can be drawn. The possibility of including quantum nuclear effects by using path-integral simulations is noted.
We show how the path-integral formulation of quantum statistical mechanics can be used to construct practical {em ab initio} techniques for computing the chemical potential of molecules adsorbed on surfaces, with full inclusion of quantum nuclear eff
First-principles calculations using density functional theory based on norm-conserving pseudopotentials have been performed to investigate the Cs adsorption on the Si(001) surface for 0.5 and 1 ML coverages. We found that the saturation coverage corr
We investigate the adsorption of a single tetracyanoethylene (TCNE) molecule on the silver (001) surface. Adsorption structures, electronic properties, and scanning tunneling microscopy (STM) images are calculated within density-functional theory. Ad
First-principles calculations using density functional theory based on norm-conserving pseudopotentials have been performed to investigate the Mg adsorption on the Si(001) surface for 1/4, 1/2 and 1 monolayer coverages. For both 1/4 and 1/2 ML covera
We develop a microscopic approach to the consistent construction of the kinetic theory of dilute weakly ionized gases of hydrogen-like atoms. The approach is based on the framework of the second quantization method in the presence of bound states of