ﻻ يوجد ملخص باللغة العربية
Point-contact (PC) spectroscopy measurements on antiferromagnetic (AF) (T_N=5.2K) HoNi2B2C single crystals in the normal and two different superconducting (SC) states (T_c=8.5K and $T_c^*=5.6K) are reported. The PC study of the electron-boson(phonon) interaction (EB(P)I) spectral function reveals pronounced phonon maxima at 16, 22 and 34meV. For the first time the high energy maxima at about 50meV and 100meV are resolved. Additionally, an admixture of a crystalline-electric-field (CEF) excitations with a maximum near 10meV and a `magnetic` peak near 3meV are observed. The contribution of the 10-meV peak in PC EPI constant lambda_PC is evaluated as 20-30%, while contribution of the high energy modes at 50 and 100meV amounts about 10% for each maxima, so the superconductivity might be affected by CEF excitations. The SC gap in HoNi2B2C exhibits a standard single-band BCS-like dependence, but vanishes at $T_c^*=5.6K<T_c, with 2Delta/kT_c^*=3.9. The strong coupling Eliashberg analysis of the low-temperature SC phase with T_c^*=5.6K =T_N, coexisting with the commensurate AF structure, suggests a sizable value of the EPI constant lambda_s=0.93. We also provide strong support for the recently proposed by us Fermi surface (FS) separation scenario for the coexistence of magnetism and superconductivity in magnetic borocarbides, namely, that the superconductivity in the commensurate AF phase survives at a special (nearly isotropic) FS sheet without an admixture of Ho 5d states. Above T_c^* the SC features in the PC characteristics are strongly suppressed pointing to a specific weakened SC state between T_c* and T_c.
We use point contact spectroscopy to probe the superconducting and normal state properties of the iron-based superconductor $rm{NaFe_{1-textit{x}}Co_{textit{x}}As}$ with $rm{textit{x} = 0, 0.02, 0.06}$. Andreev spectra corresponding to multiple super
We present study of derivatives of current-voltage I(V) characteristics of point-contacts (PCs) based on Ba{1-x}Na{x}Fe2As2 (x=0.25) in the normal and superconducting state. The detailed analysis of dV/dI(V) data (also given in Appendix A) shows that
The point-contact spectra of tantalum in the superconducting state, with $Ta$, $Cu$, and $Au$ counterelectrodes, have been studied. We discovered some new distinctive features, whose position on the $eV$ axis is determined by the critical power requi
The normal state and superconducting properties are investigated in the phase diagram of K_xSr_{1-x}Fe_2As_2 for 0<x<1. The ground state upper critical field, H_{c2}(0), is extrapolated from magnetic field dependent resistivity measurements. H_{c2}(0
We study voltage controllable superconducting state in multi-terminal bridge composed of the dirty superconductor/pure normal metal (SN) bilayer and pure normal metal. In the proposed system small control current $I_{ctrl}$ flows via normal bridge, c