ﻻ يوجد ملخص باللغة العربية
The point-contact spectra of tantalum in the superconducting state, with $Ta$, $Cu$, and $Au$ counterelectrodes, have been studied. We discovered some new distinctive features, whose position on the $eV$ axis is determined by the critical power required for the injection of nonequilibriumquasiparticles. At this level of power the band gap $Delta $ decreases abruptly in the vicinity of the contact. A correction to the point-contact spectrum, with the sign opposite to that of the usual correction, arises in the region of phonon energies. The maxima in the $Ta$ spectrum become sharper and their position on the energy axis becomes stabilized near the values $e{{V}_{ph}}=7.0$, 11.3, 15.5, and 18 $meV$, which correspond to low phonon group velocities $partial omega /partial qsimeq 0$ in $Ta$. This is confirmed by the existence of corresponding flattenings on the dispersion relations $omega (q)$ of lattice vibrations. Slow phonons are created near the $N-S$ interface in quasiparticle recombination and relaxation processes and cause a decrease in $Delta $ and an increase in the differential resistance in the vicinity of $e{{V}_{ph}}$. An excess quasiparticle charge is accumulated in the region of the contact, producing a correction to the resistance, which decreases as $eV$, $T$, and $H$ increase. These mechanisms are particularly effective in dirty contacts, thus permitting phonon spectroscopy in the superconducting state even when the current flow occurs in a nearly thermal mode.
The current-voltage characteristics (IVC) of $S-c-N$ point contacts of superconductors with a small coherence length ${{xi}_{0}}$ reveal steps with discrete values of the differential resistance. This peculiarity is associated with a transition of th
We consider a model NISIN system with two junctions in series, where N is a normal metal, S is a superconductor and I is an insulator. We assume that the resistance of the first junction is high, while the resistance of the second one is low. In this
Our previous point-contact Andreev reflection studies of the heavy-fermion superconductor CeCoIn$_5$ using Au tips have shown two clear features: reduced Andreev signal and asymmetric background conductance [1]. To explore their physical origins, we
Point-contact (PC) spectroscopy measurements on antiferromagnetic (AF) (T_N=5.2K) HoNi2B2C single crystals in the normal and two different superconducting (SC) states (T_c=8.5K and $T_c^*=5.6K) are reported. The PC study of the electron-boson(phonon)
Hybrid normal metal - insulator - superconductor microstructures suitable for studying an interference of electrons were fabricated. The structures consist of a superconducting loop connected to a normal metal electrode through a tunnel barrier . An