ترغب بنشر مسار تعليمي؟ اضغط هنا

Some Aspects of Measurement Error in Linear Regression of Astronomical Data

32   0   0.0 ( 0 )
 نشر من قبل Brandon C. Kelly
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Brandon C. Kelly




اسأل ChatGPT حول البحث

I describe a Bayesian method to account for measurement errors in linear regression of astronomical data. The method allows for heteroscedastic and possibly correlated measurement errors, and intrinsic scatter in the regression relationship. The method is based on deriving a likelihood function for the measured data, and I focus on the case when the intrinsic distribution of the independent variables can be approximated using a mixture of Gaussians. I generalize the method to incorporate multiple independent variables, non-detections, and selection effects (e.g., Malmquist bias). A Gibbs sampler is described for simulating random draws from the probability distribution of the parameters, given the observed data. I use simulation to compare the method with other common estimators. The simulations illustrate that the Gaussian mixture model outperforms other common estimators and can effectively give constraints on the regression parameters, even when the measurement errors dominate the observed scatter, source detection fraction is low, or the intrinsic distribution of the independent variables is not a mixture of Gaussians. I conclude by using this method to fit the X-ray spectral slope as a function of Eddington ratio using a sample of 39 z < 0.8 radio-quiet quasars. I confirm the correlation seen by other authors between the radio-quiet quasar X-ray spectral slope and the Eddington ratio, where the X-ray spectral slope softens as the Eddington ratio increases.

قيم البحث

اقرأ أيضاً

Results by van der Vaart (1991) from semi-parametric statistics about the existence of a non-zero Fisher information are reviewed in an infinite-dimensional non-linear Gaussian regression setting. Information-theoretically optimal inference on aspect s of the unknown parameter is possible if and only if the adjoint of the linearisation of the regression map satisfies a certain range condition. It is shown that this range condition may fail in a commonly studied elliptic inverse problem with a divergence form equation, and that a large class of smooth linear functionals of the conductivity parameter cannot be estimated efficiently in this case. In particular, Gaussian `Bernstein von Mises-type approximations for Bayesian posterior distributions do not hold in this setting.
195 - Mengyan Li , Runze Li , Yanyuan Ma 2020
For a high-dimensional linear model with a finite number of covariates measured with error, we study statistical inference on the parameters associated with the error-prone covariates, and propose a new corrected decorrelated score test and the corre sponding one-step estimator. We further establish asymptotic properties of the newly proposed test statistic and the one-step estimator. Under local alternatives, we show that the limiting distribution of our corrected decorrelated score test statistic is non-central normal. The finite-sample performance of the proposed inference procedure is examined through simulation studies. We further illustrate the proposed procedure via an empirical analysis of a real data example.
We consider the problem of performing linear regression over a stream of $d$-dimensional examples, and show that any algorithm that uses a subquadratic amount of memory exhibits a slower rate of convergence than can be achieved without memory constra ints. Specifically, consider a sequence of labeled examples $(a_1,b_1), (a_2,b_2)ldots,$ with $a_i$ drawn independently from a $d$-dimensional isotropic Gaussian, and where $b_i = langle a_i, xrangle + eta_i,$ for a fixed $x in mathbb{R}^d$ with $|x|_2 = 1$ and with independent noise $eta_i$ drawn uniformly from the interval $[-2^{-d/5},2^{-d/5}].$ We show that any algorithm with at most $d^2/4$ bits of memory requires at least $Omega(d log log frac{1}{epsilon})$ samples to approximate $x$ to $ell_2$ error $epsilon$ with probability of success at least $2/3$, for $epsilon$ sufficiently small as a function of $d$. In contrast, for such $epsilon$, $x$ can be recovered to error $epsilon$ with probability $1-o(1)$ with memory $Oleft(d^2 log(1/epsilon)right)$ using $d$ examples. This represents the first nontrivial lower bounds for regression with super-linear memory, and may open the door for strong memory/sample tradeoffs for continuous optimization.
This paper proposes a fast and accurate method for sparse regression in the presence of missing data. The underlying statistical model encapsulates the low-dimensional structure of the incomplete data matrix and the sparsity of the regression coeffic ients, and the proposed algorithm jointly learns the low-dimensional structure of the data and a linear regressor with sparse coefficients. The proposed stochastic optimization method, Sparse Linear Regression with Missing Data (SLRM), performs an alternating minimization procedure and scales well with the problem size. Large deviation inequalities shed light on the impact of the various problem-dependent parameters on the expected squared loss of the learned regressor. Extensive simulations on both synthetic and real datasets show that SLRM performs better than competing algorithms in a variety of contexts.
Dendrimers are characterized by special features that make them promising candidates for many applications. Here we focus on two such applications: dendrimers as light harvesting antennae, and dendrimers as molecular amplifiers, which may serve as no vel platforms for drug delivery. Both applications stem from the unique structure of dendrimers. We present a theoretical framework based on the master equation within which we describe these applications. The quantities of interest are the first passage time (FPT) probability density function (PDF), and its moments. We examine how the FPT PDF and its characteristics depend on the geometric and energetic structures of the dendrimeric system. In particular, we investigate the dependence of the FPT properties on the number of generations (dendrimer size), and the system bias. We present analytical expressions for the FPT PDF for very efficient dendrimeric antennae and for dendrimeric amplifiers. For these cases the mean first passage time scales linearly with the system length, and fluctuations around the mean first passage time are negligible for large systems. Relationships of the FPT to light harvesting process for other types of system-bias are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا