ترغب بنشر مسار تعليمي؟ اضغط هنا

The Millennium Galaxy Catalogue: The connection between close pairs and asymmetry; implications for the galaxy merger rate

579   0   0.0 ( 0 )
 نشر من قبل Roberto de Propris
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف R. De Propris




اسأل ChatGPT حول البحث

We compare the use of galaxy asymmetry and pair proximity for measuring galaxy merger fractions and rates for a volume limited sample of 3184 galaxies with -21 < M(B) -5 log h < -18 mag. and 0.010 < z < 0.123 drawn from the Millennium Galaxy Catalogue. Our findings are that: (i) Galaxies in close pairs are generally more asymmetric than isolated galaxies and the degree of asymmetry increases for closer pairs. At least 35% of close pairs (with projected separation of less than 20 h^{-1} kpc and velocity difference of less than 500 km s^{-1}) show significant asymmetry and are therefore likely to be physically bound. (ii) Among asymmetric galaxies, we find that at least 80% are either interacting systems or merger remnants. However, a significant fraction of galaxies initially identified as asymmetric are contaminated by nearby stars or are fragmented by the source extraction algorithm. Merger rates calculated via asymmetry indices need careful attention in order to remove the above sources of contamination, but are very reliable once this is carried out. (iii) Close pairs and asymmetries represent two complementary methods of measuring the merger rate. Galaxies in close pairs identify future mergers, occurring within the dynamical friction timescale, while asymmetries are sensitive to the immediate pre-merger phase and identify remnants. (iv) The merger fraction derived via the close pair fraction and asymmetries is about 2% for a merger rate of (5.2 +- 1.0) 10^{-4} h^3 Mpc^{-3} Gyr^{-1}. These results are marginally consistent with theoretical simulations (depending on the merger time-scale), but imply a flat evolution of the merger rate with redshift up to z ~1.



قيم البحث

اقرأ أيضاً

60 - S.C. Ellis 2005
The distribution of global photometric, spectroscopic, structural and morphological parameters for a well defined sample of 350 nearby galaxies has been examined. The usual trends were recovered demonstrating that E/S0 galaxies are redder, more quies cent, more centrally concentrated and possess larger Sersic indices than later type galaxies. Multivariate statistical analyses were performed to examine the distribution of all parameters simultaneously. The main result of these analyses was the existence of only two classes of galaxies, corresponding closely to early and late types. Linear discriminant analysis was able to reproduce the classifications of early and late types galaxies with high success, but further refinement of galaxy types was not reproduced in the distribution of observed galaxy properties. A principal components analysis showed that the major variance of the parameter set corresponded to a distinction between early and late types, highlighting the importance of the distinction. A hierarchical clustering analysis revealed only two clear natural classes within the parameter set, closely corresponding to early and late types. Early and late types are clearly distinct and the distinction is of fundamental importance. In contrast, late types from Sa to Irr are smoothly distributed throughout the parameter space. A population of galaxies classified by eye as elliptical/lenticular, and exhibiting concentration indices similar to early-types were found to have a significant star-formation activity. These galaxies are preferentially faint, suggesting they are low-mass systems.
58 - Lihwai Lin 2004
We derive the close, kinematic pair fraction and merger rate up to z ~ 1.2 from the initial data of the DEEP2 Redshift Survey. Assuming a mild luminosity evolution, the number of companions per luminous galaxy is found to evolve as (1+z)^{m}, with m = 0.51+-0.28; assuming no evolution, m = 1.60+-0.29. Our results imply that only 9% of present-day $L^{*}$ galaxies have undergone major mergers since z ~ 1.2 and that the average major merger rate is about 4* 10^{-4} h^{3} Mpc^{-3} Gyr^{-1} for z ~ 0.5 - 1.2. Most previous studies have yielded higher values.
We investigate the connection between star formation and molecular gas properties in galaxy mergers at low redshift (z$leq$0.06). The study we present is based on IRAM 30-m CO(1-0) observations of 11 galaxies with a close companion selected from the Sloan Digital Sky Survey (SDSS). The pairs have mass ratios $leq$4, projected separations r$_{mathrm{p}} leq$30 kpc and velocity separations $Delta$V$leq$300 km s$^{-1}$, and have been selected to exhibit enhanced specific star formation rates (sSFR). We calculate molecular gas (H$_{2}$) masses, assigning to each galaxy a physically motivated conversion factor $alpha_{mathrm{CO}}$, and we derive molecular gas fractions and depletion times. We compare these quantities with those of isolated galaxies from the extended CO Legacy Data base for the GALEX Arecibo SDSS Survey sample (xCOLDGASS, Saintonge et al. 2017) with gas quantities computed in an identical way. Ours is the first study which directly compares the gas properties of galaxy pairs and those of a control sample of normal galaxies with rigorous control procedures and for which SFR and H$_{2}$ masses have been estimated using the same method. We find that the galaxy pairs have shorter depletion times and an average molecular gas fraction enhancement of 0.4 dex compared to the mass matched control sample drawn from xCOLDGASS. However, the gas masses (and fractions) in galaxy pairs and their depletion times are consistent with those of non-mergers whose SFRs are similarly elevated. We conclude that both external interactions and internal processes may lead to molecular gas enhancement and decreased depletion times.
We present results of a statistical study of the cosmic evolution of the mass dependent major-merger rate since z=1. A stellar mass limited sample of close major-merger pairs (the CPAIR sample) was selected from the archive of the COSMOS survey. Pair fractions at different redshifts derived using the CPAIR sample and a local K-band selected pair sample show no significant variations with stellar mass. The pair fraction exhibits moderately strong cosmic evolution, with the best-fitting evolutionary index m=2.2+-0.2. The best-fitting function for the merger rate implies that galaxies with stellar mass between 1E+10 -- 3E+11 M_sun have undergone 0.5 -- 1.5 major-mergers since z=1. Our results show that, for massive galaxies at z<1, major mergers involving star forming galaxies (i.e. wet and mixed mergers) can account for the formation of both ellipticals and red quiescent galaxies (RQGs). On the other hand, major mergers cannot be responsible for the formation of most low mass ellipticals and RQGs. Our quantitative estimates indicate that major mergers have significant impact on the stellar mass assembly of the most massive galaxies, but for less massive galaxies the stellar mass assembly is dominated by the star formation. Comparison with the mass dependent (U)LIRG rates suggests that the frequency of major-merger events is comparable to or higher than that of (U)LIRGs.
The Millennium Galaxy Catalogue (MGC) is a deep ($mu_{rm B,lim}=26$ mag arcsec$^{-2}$), wide field CCD imaging survey, covering 37.5deg$^2$ and is completely contained within the 2dFGRS and SDSS-EDR. We compare the photometry and completeness of the 2dFGRS and the SDSS-EDR with the MGC. We have also undertaken a photometric comparison to SCOS and SDSS-DR1 data. We find that $B_{MGC}-B_{2dF}=0.035$ mag with an uncertainty of 0.142 mag per galaxy, $B_{MGC}-B_{SCOS}=0.032$ mag with an uncertainty of 0.108 mag, $B_{MGC}-B_{SDSS-EDR}=0.032$ mag with an uncertainty of 0.094 mag, and $B_{MGC}-B_{SDSS-DR1}=0.039$ mag with an uncertainty of 0.086 mag. We find that high surface brightness 2dFGRS galaxies are systematically too faint. In the SDSS there is a weak non-linear scale error, which is negligible for faint galaxies. LSBGs in the SDSS are systematically fainter. We find that the 2dFGRS catalogue has 5.2% stellar contamination, 7.0% of objects are resolved into 2 or more by the MGC and is 8.7% incomplete compared to the MGC. From our all object spectroscopic survey we find that the MGC is itself misclassifying 5.6% of galaxies as stars, hence the 2dFGRS misses 14.3% of the galaxies. The SDSS-EDR galaxy catalogue has 1.3% stellar contamination and 5.3% of galaxies misclassified as stars, and is 1.8% incomplete compared to the MGC. Altogether 7.1% of the total galaxy population are missing from the SDSS-EDR catalogue from incompleteness or misclassification.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا