ﻻ يوجد ملخص باللغة العربية
We investigate the connection between star formation and molecular gas properties in galaxy mergers at low redshift (z$leq$0.06). The study we present is based on IRAM 30-m CO(1-0) observations of 11 galaxies with a close companion selected from the Sloan Digital Sky Survey (SDSS). The pairs have mass ratios $leq$4, projected separations r$_{mathrm{p}} leq$30 kpc and velocity separations $Delta$V$leq$300 km s$^{-1}$, and have been selected to exhibit enhanced specific star formation rates (sSFR). We calculate molecular gas (H$_{2}$) masses, assigning to each galaxy a physically motivated conversion factor $alpha_{mathrm{CO}}$, and we derive molecular gas fractions and depletion times. We compare these quantities with those of isolated galaxies from the extended CO Legacy Data base for the GALEX Arecibo SDSS Survey sample (xCOLDGASS, Saintonge et al. 2017) with gas quantities computed in an identical way. Ours is the first study which directly compares the gas properties of galaxy pairs and those of a control sample of normal galaxies with rigorous control procedures and for which SFR and H$_{2}$ masses have been estimated using the same method. We find that the galaxy pairs have shorter depletion times and an average molecular gas fraction enhancement of 0.4 dex compared to the mass matched control sample drawn from xCOLDGASS. However, the gas masses (and fractions) in galaxy pairs and their depletion times are consistent with those of non-mergers whose SFRs are similarly elevated. We conclude that both external interactions and internal processes may lead to molecular gas enhancement and decreased depletion times.
We compare the radial profiles of the specific star formation rate (sSFR) in a sample of 169 star-forming galaxies in close pairs with those of mass-matched control galaxies in the SDSS-IV MaNGA survey. We find that the sSFR is centrally enhanced (wi
We present ~1 resolution (~2 kpc in the source plane) observations of the CO(1-0), CO(3-2), Halpha, and [N II] lines in the strongly-lensed z=2.26 star-forming galaxy SDSS J0901+1814. We use these observations to constrain the lensing potential of a
A key task of observational extragalactic astronomy is to determine where -- within galaxies of diverse masses and morphologies -- stellar mass growth occurs, how it depends on galaxy properties and what processes regulate star formation. Using spect
We present a detailed study of the Circinus Galaxy, investigating its star formation, dust and gas properties both in the inner and outer disk. To achieve this, we obtained high-resolution Spitzer mid-infrared images with the IRAC (3.6, 5.8, 4.5, 8.0
Currently-proposed galaxy quenching mechanisms predict very different behaviours during major halo mergers, ranging from significant quenching enhancement (e.g., clump-induced gravitational heating models) to significant star formation enhancement (e