ترغب بنشر مسار تعليمي؟ اضغط هنا

The dynamical response to the node defect in thermally activated remagnetization of magnetic dot array

38   0   0.0 ( 0 )
 نشر من قبل Pavel Balaz
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The influence of nonmagnetic central node defect on dynamical properties of regular square-shaped 5 x 5 segment of magnetic dot array under the thermal activation is investigated via computer simulations. Using stochastic Landau-Lifshitz-Gilbert equation we simulate hysteresis and relaxation processes. The remarkable quantitative and qualitative differences between magnetic dot arrays with nonmagnetic central node defect and magnetic dot arrays without defects have been found.

قيم البحث

اقرأ أيضاً

110 - D. Bedau , H. Liu , J. Z. Sun 2010
The effect of thermal fluctuations on spin-transfer switching has been studied for a broad range of time scales (sub-ns to seconds) in a model system, a uniaxial thin film nanomagnet. The nanomagnet is incorporated into a spin-valve nanopillar, which is subject to spin-polarized current pulses of variable amplitude and duration. Two physical regimes are clearly distinguished: a long pulse duration regime, in which reversal occurs by spin-transfer assisted thermal activation over an energy barrier, and a short time large pulse amplitude regime, in which the switching probability is determined by the spin angular momentum in the current pulse.
66 - J. Kim 1999
We propose a di-interstitial model for the P6 center commonly observed in ion implanted silicon. The di-interstitial structure and transition paths between different defect orientations can explain the thermally activated transition of the P6 center from low-temperature C1h to room-temperature D2d symmetry. The activation energy for the defect reorientation determined by ab initio calculations is 0.5 eV in agreement with the experiment. Our di-interstitial model establishes a link between point defects and extended defects, di-interstitials providing the nuclei for the growth.
We propose a ``multifractal stress activation model combining thermally activated rupture and long memory stress relaxation, which predicts that seismic decay rates after mainshocks follow the Omori law $sim 1/t^p$ with exponents $p$ linearly increas ing with the magnitude $M_L$ of the mainshock and the inverse temperature. We carefully test this prediction on earthquake sequences in the Southern California Earthquake catalog: we find power law relaxations of seismic sequences triggered by mainshocks with exponents $p$ increasing with the mainshock magnitude by approximately $0.1-0.15$ for each magnitude unit increase, from $p(M_L=3) approx 0.6$ to $p(M_L=7) approx 1.1$, in good agreement with the prediction of the multifractal model.
We study the role of thermal fluctuations on the spin dynamics of a thin permalloy film with a focus on the behavior of spin torque and find that the thermally assisted spin torque results in new aspects of the magnetization dynamics. In particular, we uncover the formation of a finite, spin torque-induced, in-plane magnetization component. The orientation of the in-plane magnetization vector depends on the temperature and the spin-torque coupling. We investigate and illustrate that the variation of the temperature leads to a thermally-induced rotation of the in-plane magnetization.
Crystallographic alignment between two-dimensional crystals in van der Waals heterostructures brought a number of profound physical phenomena, including observation of Hofstadter butterfly and topological currents, and promising novel applications, s uch as resonant tunnelling transistors. Here, by probing the electronic density of states in graphene using graphene-hexagonal boron nitride tunnelling transistors, we demonstrate a structural transition of bilayer graphene from incommensurate twisted stacking state into a commensurate AB stacking due to a macroscopic graphene self-rotation. This structural transition is accompanied by a topological transition in the reciprocal space and by pseudospin texturing. The stacking transition is driven by van der Waals interaction energy of the two graphene layers and is thermally activated by unpinning the microscopic chemical adsorbents which are then removed by the self-cleaning of graphene.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا