ترغب بنشر مسار تعليمي؟ اضغط هنا

Cellular Systems with Full-Duplex Amplify-and-Forward Relaying and Cooperative Base-Stations

108   0   0.0 ( 0 )
 نشر من قبل Oren Somekh
 تاريخ النشر 2007
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper the benefits provided by multi-cell processing of signals transmitted by mobile terminals which are received via dedicated relay terminals (RTs) are assessed. Unlike previous works, each RT is assumed here to be capable of full-duplex operation and receives the transmission of adjacent relay terminals. Focusing on intra-cell TDMA and non-fading channels, a simplified uplink cellular model introduced by Wyner is considered. This framework facilitates analytical derivation of the per-cell sum-rate of multi-cell and conventional single-cell receivers. In particular, the analysis is based on the observation that the signal received at the base stations can be interpreted as the outcome of a two-dimensional linear time invariant system. Numerical results are provided as well in order to provide further insight into the performance benefits of multi-cell processing with relaying.

قيم البحث

اقرأ أيضاً

In this paper the advantages provided by multicell processing of signals transmitted by mobile terminals (MTs) which are received via dedicated relay terminals (RTs) are studied. It is assumed that each RT is capable of full-duplex operation and rece ives the transmission of adjacent relay terminals. Focusing on intra-cell TDMA and non-fading channels, a simplified relay-aided uplink cellular model based on a model introduced by Wyner is considered. Assuming a nomadic application in which the RTs are oblivious to the MTs codebooks, a form of distributed compress-and-forward (CF) scheme with decoder side information is employed. The per-cell sum-rate of the CF scheme is derived and is given as a solution of a simple fixed point equation. This achievable rate reveals that the CF scheme is able to completely eliminate the inter-relay interference, and it approaches a ``cut-set-like upper bound for strong RTs transmission power. The CF rate is also shown to surpass the rate of an amplify-and-forward scheme via numerical calculations for a wide range of the system parameters.
104 - Hongwu Liu , Kyung Sup Kwak 2016
This paper proposes a virtual harvest-transmit model and a harvest-transmit-store model for amplify-and-forward full-duplex relay (FDR) networks with power splitting-based simultaneous wireless information and power transfer. The relay node employs a battery group consisting of two rechargeable batteries. By switching periodically between two batteries for charging and discharging in two consecutive time slots of each transmission block, all the harvested energy in each block has been applied for full duplex transmission in the virtual harvest-transmit model. By employing energy scheduling, the relay node switches among the harvesting, relaying, harvesting-relaying, and idle behaviors at a block level, so that a part of the harvested energy in a block can be scheduled for future usage in the harvest-transmit-store model. A greedy switching policy is designed to implement the harvest-transmit-store model, where the FDR node transmits when its residual energy ensures decoding at the destination. Numerical results verify the outage performance of the proposed schemes.
This paper considers a multipair amplify-and-forward massive MIMO relaying system with low-resolution ADCs at both the relay and destinations. The channel state information (CSI) at the relay is obtained via pilot training, which is then utilized to perform simple maximum-ratio combining/maximum-ratio transmission processing by the relay. Also, it is assumed that the destinations use statistical CSI to decode the transmitted signals. Exact and approximated closed-form expressions for the achievable sum rate are presented, which enable the efficient evaluation of the impact of key system parameters on the system performance. In addition, optimal relay power allocation scheme is studied, and power scaling law is characterized. It is found that, with only low-resolution ADCs at the relay, increasing the number of relay antennas is an effective method to compensate for the rate loss caused by coarse quantization. However, it becomes ineffective to handle the detrimental effect of low-resolution ADCs at the destination. Moreover, it is shown that deploying massive relay antenna arrays can still bring significant power savings, i.e., the transmit power of each source can be cut down proportional to $1/M$ to maintain a constant rate, where $M$ is the number of relay antennas.
145 - Yi Lou , Julian Cheng , Yan Zheng 2017
A novel asymptotic closed-form probability density function (pdf) of the two-hop (TH) link is derived for a simultaneous wireless information and power transfer based differential amplify-and-forward system. Based on the pdf, asymptotic closed-form a verage bit-error rate expressions of the single TH link and the TH link with direct link combined with a linear combining scheme are both derived. Monte Carlo simulations verify the analytical expressions.
In this work, we address reliable communication of low-latency packets in the presence of a full-duplex adversary that is capable of executing a jamming attack while also being able to measure the power levels on various frequency bands. Due to the p resence of a strong adversary, first, we point out that traditional frequency-hopping does not help since unused frequency bands may not be available, and moreover, the victims transition between the frequency bands would be detected by the full-duplex adversary. Identifying these challenges, we propose a new cooperative mitigation strategy, referred to as the Semi-Coherent Fast-Forward Full-Duplex (SC-FFFD) relaying technique, wherein the victim node, upon switching to a new frequency band, seeks the assistance of its incumbent user, which is also a full-duplex radio, to instantaneously forward its messages to the destination using a portion of their powers. Meanwhile, the two nodes cooperatively use their residual powers on the jammed frequency band so as to engage the adversary to continue executing the jamming attack on the same band. Using on-off keying (OOK) and phase-shift-keying (PSK) as the modulation schemes at the victim and the helper node, respectively, we derive upper bounds on the probability of error of jointly decoding the information symbols of the two nodes, and subsequently derive analytical solutions to arrive at the power-splitting factor between the two frequency bands to minimize the error of both the nodes. We also present extensive simulation results for various signal-to-noise-ratio values and PSK constellations to showcase the efficacy of the proposed approach.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا