ﻻ يوجد ملخص باللغة العربية
We propose a novel experiment to identify the symmetry of superconductivity on the basis of theoretical results for differential conductance of a normal metal connected to a superconductor. The proximity effect from the superconductor modifies the conductance of the remote current depending remarkably on the pairing symmetry: spin-singlet or spin-triplet. The clear-cut difference in the conductance is explained by symmetry of Cooper pairs in a normal metal with respect to frequency. In the spin-triplet case, the anomalous transport is realized due to an odd-frequency symmetry of Cooper pairs.
The few-layer transition metal dichalcogenides (TMDs) have been recently suggested as a platform for controlled unconventional superconductivity. We study the manifestations of unconventional triplet pairing in the density of states of a disordered T
We study the proximity effect between the fully-gapped region of a topological insulator in direct contact with an s-wave superconducting electrode (STI) and the surrounding topological insulator flake (TI) in Au/Bi$_{1.5}$Sb$_{0.5}$Te$_{1.7}$Se$_{1.
In the past year, several groups have observed evidence for long-range spin-triplet supercurrent in Josephson junctions containing ferromagnetic (F) materials. In our work, the spin-triplet pair correlations are created by non-collinear magnetization
Cooper pairs in superconductors are normally spin singlet. Nevertheless, recent studies suggest that spin-triplet Cooper pairs can be created at carefully engineered superconductor-ferromagnet interfaces. If Cooper pairs are spin-polarized they would
In 2010, several experimental groups obtained compelling evidence for spin-triplet supercurrent in Josephson junctions containing strong ferromagnetic materials. Our own best results were obtained from large-area junctions containing a thick central