ترغب بنشر مسار تعليمي؟ اضغط هنا

Signatures of triplet correlations in density of states of Ising superconductors

64   0   0.0 ( 0 )
 نشر من قبل Maxim Khodas
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The few-layer transition metal dichalcogenides (TMDs) have been recently suggested as a platform for controlled unconventional superconductivity. We study the manifestations of unconventional triplet pairing in the density of states of a disordered TMD based monolayer. The conventional singlet pairing attraction is assumed to be the dominant pairing interaction. We map the phase diagrams of disordered Ising superconductors in the plane of temperature and the in-plane magnetic field. The latter suppresses singlet and promote triplet correlations. The triplet order parameters of a trivial (non-trivial) symmetry compete (cooperate) with the singlet order parameter which gives rise to a rich phase diagram. We locate the model-dependent phase boundaries and compute the order parameters in each of the distinct phases. With this information, we obtain the density of states by solving the Gorkov equation. The triplet components of the order parameters may change an apparent width of the density of states by significantly increasing the critical field. The triplet components of the order parameters lead to the density of states broadening significantly exceeding the broadening induced by magnetic field and disorder in the singlet superconductor.

قيم البحث

اقرأ أيضاً

We explore correlations of inhomogeneous local density of states (LDoS) for impure superconductors with different symmetries of the order parameter (s-wave and d-wave) and different types of scatterers (elastic and magnetic impurities). It turns out that the LDoS correlation function of superconductor always slowly decreases with distance up to the phase-breaking length $l_{phi}$ and its long-range spatial behavior is determined only by the dimensionality, as in normal metals. On the other hand, the energy dependence of this correlation function is sensitive to symmetry of the order parameter and nature of scatterers. Only in the simplest case of s-wave superconductor with elastic scatterers the inhomogeneous LDoS is directly connected to the corresponding characteristics of normal metal.
We propose a novel experiment to identify the symmetry of superconductivity on the basis of theoretical results for differential conductance of a normal metal connected to a superconductor. The proximity effect from the superconductor modifies the co nductance of the remote current depending remarkably on the pairing symmetry: spin-singlet or spin-triplet. The clear-cut difference in the conductance is explained by symmetry of Cooper pairs in a normal metal with respect to frequency. In the spin-triplet case, the anomalous transport is realized due to an odd-frequency symmetry of Cooper pairs.
We consider a superconductor with surface suppression of the BCS pairing constant $lambda(x)$. We analytically find the gap in the surface density of states (DOS), behavior of the DOS $ u(E)$ above the gap, a vertical peculiarity of the DOS around an energy equal to the bulk order parameter $Delta_0$, and a perturbative correction to the DOS at higher energies. The surface gap in the DOS is parametrically different from the surface value of the order parameter due to a difference between the spatial scale $r_c$, at which $lambda(x)$ is suppressed, and the coherence length. The vertical peculiarity implies an infinite-derivative inflection point of the DOS curve at $E=Delta_0$ with square-root behavior as $E$ deviates from $Delta_0$. The coefficients of this dependence are different at $E<Delta_0$ and $E>Delta_0$, so the peculiarity is asymmetric.
We study quasiparticle states on a surface of a topological insulator (TI) with proximity-induced superconductivity under an external magnetic field. An applied magnetic field creates two Majorana bound states: a vortex Majorana state localized insid e a vortex core and an exterior Majorana state localized along a circle centered at the vortex core. We calculate the spin-resolved local density of states (LDOS) and demonstrate that the shrinking of the radius of the exterior Majorana state, predicted in Ref. [R. S. Akzyanov et al., Phys. Rev. B 94, 125428 (2016)], under a strong magnetic field can be seen in LDOS without smeared out by non-zero-energy states. The spin-resolved LDOS further reveals that the spin of the exterior Majorana state is strongly polarized. Accordingly, the induced odd-frequency spin-triplet pairs are found to be spin-polarized as well. In order to detect the exterior Majorana states, however, the Fermi energy should be closed to the Dirac point to avoid contributions from continuum levels. We also study a different two-dimensional topological-superconducting system where a two-dimensional electron gas with the spin-orbit coupling is sandwiched between an s-wave superconductor and a ferromagnetic insulator. We show that the radius of an exterior Majorana state can be tuned by an applied magnetic field. However, on the contrary to the results at a TI surface, neither the exterior Majorana state nor the induced odd-frequency spin-triplet pairs are spin-polarized. We conclude that the spin-polarization of the Majorana state is attributed to the spin-polarized Landau level which is characteristic for systems with the Dirac-like dispersion.
Using van der Waals tunnel junctions, we perform spectroscopy of superconducting $mathrm{NbSe_2}$ flakes, of thicknesses ranging from 2--25 monolayers, measuring the quasiparticle density of states as a function of applied in-plane magnetic field up to 33T. In flakes up to $approx$ 15 monolayers thick, we find that the density of states is well-described by a single band superconductor. In these thin samples, the magnetic field acts primarily on the spin (vs orbital) degree of freedom of the electrons, and superconductivity is further protected by Ising spin-orbit coupling (ISOC), which pins Cooper pair spins out-of-plane. The superconducting energy gap, extracted from our tunnelling spectra, decreases as a function of the applied magnetic field. However, in bilayer $mathrm{NbSe_2}$, close to the critical field (up to 30T, much larger than the Pauli limit), superconductivity appears to be even more robust than expected if only ISOC is considered. This can be explained by a predicted subdominant triplet component of the order parameter, coupled to the dominant singlet component at finite field. This equal-spin, odd-parity triplet state arises from the non-colinearity between the applied magnetic field and the Ising field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا