ترغب بنشر مسار تعليمي؟ اضغط هنا

Characterization of Instrumental Phase Stability

367   0   0.0 ( 0 )
 نشر من قبل Todd Hunter
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Atmospheric water vapor causes significant undesired phase fluctuations for the Submillimeter Array (SMA) interferometer, particularly in its highest frequency observing band of 690 GHz. One proposed solution to this atmospheric effect is to observe simultaneously at two separate frequency bands of 230 and 690 GHz. Although the phase fluctuations have a smaller magnitude at the lower frequency, they can be measured more accurately and on shorter timescales due to the greater sensitivity of the array to celestial point source calibrators at this frequency. In theory, we can measure the atmospheric phase fluctuations in the 230 GHz band, scale them appropriately with frequency, and apply them to the data in 690 band during the post-observation calibration process. The ultimate limit to this atmospheric phase calibration scheme will be set by the instrumental phase stability of the IF and LO systems. We describe the methodology and initial results of the phase stability characterization of the IF and LO systems.


قيم البحث

اقرأ أيضاً

Many discovered multiplanet systems are tightly packed. This implies that wide parameter ranges in masses and orbital elements can be dynamically unstable and ruled out. We present a case study of Kepler-23, a compact three-planet system where constr aints from stability, transit timing variations (TTVs), and transit durations can be directly compared. We find that in this tightly packed system, stability can place upper limits on the masses and orbital eccentricities of the bodies that are comparable to or tighter than current state of the art methods. Specifically, stability places 68% upper limits on the orbital eccentricities of 0.09, 0.04, and 0.05 for planets $b$, $c$ and $d$, respectively. These constraints correspond to radial velocity signals $lesssim 20$ cm/s, are significantly tighter to those from transit durations, and comparable to those from TTVs. Stability also yields 68% upper limits on the masses of planets $b$, $c$ and $d$ of 2.2, 16.1, and 5.8 $M_oplus$, respectively, which were competitive with TTV constraints for the inner and outer planets. Performing this stability constrained characterization is computationally expensive with N-body integrations. We show that SPOCK, the Stability of Planetary Orbital Configurations Klassifier, is able to faithfully approximate the N-body results over 4000 times faster. We argue that such stability constrained characterization of compact systems is a challenging needle-in-a-haystack problem (requiring removal of 2500 unstable configurations for every stable one for our adopted priors) and we offer several practical recommendations for such stability analyses.
SCExAO at the Subaru telescope is a visible and near-infrared high-contrast imaging instrument employing extreme adaptive optics and coronagraphy. The instrument feeds the near-infrared light (JHK) to the integral-field spectrograph CHARIS. The spect ropolarimetric capability of CHARIS is enabled by a Wollaston prism and is unique among high-contrast imagers. We present a detailed Mueller matrix model describing the instrumental polarization effects of the complete optical path, thus the telescope and instrument. From measurements with the internal light source, we find that the image derotator (K-mirror) produces strongly wavelength-dependent crosstalk, in the worst case converting ~95% of the incident linear polarization to circularly polarized light that cannot be measured. Observations of an unpolarized star show that the magnitude of the instrumental polarization of the telescope varies with wavelength between 0.5% and 1%, and that its angle is exactly equal to the altitude angle of the telescope. Using physical models of the fold mirror of the telescope, the half-wave plate, and the derotator, we simultaneously fit the instrumental polarization effects in the 22 wavelength bins. Over the full wavelength range, our model currently reaches a total polarimetric accuracy between 0.08% and 0.24% in the degree of linear polarization. We propose additional calibration measurements to improve the polarimetric accuracy to <0.1% and plan to integrate the complete Mueller matrix model into the existing CHARIS post-processing pipeline. Our calibrations of CHARIS spectropolarimetric mode will enable unique quantitative polarimetric studies of circumstellar disks and planetary and brown dwarf companions.
This technical note studies Lyapunov-like conditions to ensure a class of dynamical systems to exhibit predefined-time stability. The origin of a dynamical system is predefined-time stable if it is fixed-time stable and an upper bound of the settling -time function can be arbitrarily chosen a priori through a suitable selection of the system parameters. We show that the studied Lyapunov-like conditions allow to demonstrate equivalence between previous Lyapunov theorems for predefined-time stability for autonomous systems. Moreover, the obtained Lyapunov-like theorem is extended for analyzing the property of predefined-time ultimate boundedness with predefined bound, which is useful when analyzing uncertain dynamical systems. Therefore, the proposed results constitute a general framework for analyzing predefined-time stability, and they also unify a broad class of systems which present the predefined-time stability property. On the other hand, the proposed framework is used to design robust controllers for affine control systems, which induce predefined-time stability (predefined-time ultimate boundedness of the solutions) w.r.t. to some desired manifold. A simulation example is presented to show the behavior of a developed controller, especially regarding the settling time estimation.
Context. Circumstellar disks and self-luminous giant exoplanets or companion brown dwarfs can be characterized through direct-imaging polarimetry at near-infrared wavelengths. SPHERE/IRDIS at the Very Large Telescope has the capabilities to perform s uch measurements, but uncalibrated instrumental polarization effects limit the attainable polarimetric accuracy. Aims. We aim to characterize and correct the instrumental polarization effects of the complete optical system, i.e. the telescope and SPHERE/IRDIS. Methods. We create a detailed Mueller matrix model in the broadband filters Y-, J-, H- and Ks, and calibrate it using measurements with SPHEREs internal light source and observations of two unpolarized stars. We develop a data-reduction method that uses the model to correct for the instrumental polarization effects, and apply it to observations of the circumstellar disk of T Cha. Results. The instrumental polarization is almost exclusively produced by the telescope and SPHEREs first mirror and varies with telescope altitude angle. The crosstalk primarily originates from the image derotator (K-mirror). At some orientations, the derotator causes severe loss of signal (>90% loss in H- and Ks-band) and strongly offsets the angle of linear polarization. With our correction method we reach in all filters a total polarimetric accuracy of <0.1% in the degree of linear polarization and an accuracy of a few degrees in angle of linear polarization. Conclusions. The correction method enables us to accurately measure the polarized intensity and angle of linear polarization of circumstellar disks, and is a vital tool for detecting unresolved (inner) disks and measuring the polarization of substellar companions. We have incorporated the correction method in a highly-automatic end-to-end data-reduction pipeline called IRDAP which is publicly available at https://irdap.readthedocs.io.
In this paper, we present a novel approach to identify the generators and states responsible for the small-signal stability of power networks. To this end, the newly developed notion of information transfer between the states of a dynamical system is used. In particular, using the concept of information transfer, which characterizes influence between the various states and a linear combination of states of a dynamical system, we identify the generators and states which are responsible for causing instability of the power network. While characterizing influence from state to state, information transfer can also describe influence from state to modes thereby generalizing the well-known notion of participation factor while at the same time overcoming some of the limitations of the participation factor. The developed framework is applied to study the three bus system identifying various cause of instabilities in the system. The simulation study is extended to IEEE 39 bus system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا