ﻻ يوجد ملخص باللغة العربية
Many discovered multiplanet systems are tightly packed. This implies that wide parameter ranges in masses and orbital elements can be dynamically unstable and ruled out. We present a case study of Kepler-23, a compact three-planet system where constraints from stability, transit timing variations (TTVs), and transit durations can be directly compared. We find that in this tightly packed system, stability can place upper limits on the masses and orbital eccentricities of the bodies that are comparable to or tighter than current state of the art methods. Specifically, stability places 68% upper limits on the orbital eccentricities of 0.09, 0.04, and 0.05 for planets $b$, $c$ and $d$, respectively. These constraints correspond to radial velocity signals $lesssim 20$ cm/s, are significantly tighter to those from transit durations, and comparable to those from TTVs. Stability also yields 68% upper limits on the masses of planets $b$, $c$ and $d$ of 2.2, 16.1, and 5.8 $M_oplus$, respectively, which were competitive with TTV constraints for the inner and outer planets. Performing this stability constrained characterization is computationally expensive with N-body integrations. We show that SPOCK, the Stability of Planetary Orbital Configurations Klassifier, is able to faithfully approximate the N-body results over 4000 times faster. We argue that such stability constrained characterization of compact systems is a challenging needle-in-a-haystack problem (requiring removal of 2500 unstable configurations for every stable one for our adopted priors) and we offer several practical recommendations for such stability analyses.
We combine analytical understanding of resonant dynamics in two-planet systems with machine learning techniques to train a model capable of robustly classifying stability in compact multi-planet systems over long timescales of $10^9$ orbits. Our Stab
We calculate and analyze the distribution of period ratios observed in systems of Kepler exoplanet candidates including studies of both adjacent planet pairs and all planet pairs. These distributions account for both the geometrical bias against dete
Understanding the relationship between long-period giant planets and multiple smaller short-period planets is critical for formulating a complete picture of planet formation. This work characterizes three such systems. We present Kepler-65, a system
We derive a semi-analytic criterion for the presence of chaos in compact, eccentric multiplanet systems. Beyond a minimum semimajor-axis separation, below which the dynamics are chaotic at all eccentricities, we show that (i) the onset of chaos is de
A decade of surveys has hinted at a possible higher occurrence rate of debris discs in systems hosting low mass planets. This could be due to common favourable forming conditions for rocky planets close in and planetesimals at large radii. In this pa