ﻻ يوجد ملخص باللغة العربية
We investigate the properties of quantum entanglement of two-mode squeezed states interacting with linear baths with general gain and loss parameters. By explicitly solving for rho from the master equation, we determine analytical expressions of eigenvalues and eigenvectors of rho^{T_A} (the partial transposition of density matrix rho). In Fock space, rho^{T_A} is shown to maintain a block diagonal structure as the system evolves. In addition, we discover that the decoherence induced by the baths would break the degeneracy of rho^{T_A}, and leads to a novel set of eigenvectors for the construction of entanglement witness operators. Such eigenvectors are shown to be time-independent, which is a signature of robust entanglement of two-mode squeezed states in the presence of noise.
A quantum memory for light is a key element for the realization of future quantum information networks. Requirements for a good quantum memory are (i) versatility (allowing a wide range of inputs) and (ii) true quantum coherence (preserving quantum i
The two-mode quantum Rabi model with bilinear coupling is studied using extended squeezed states. We derive $G$-functions for each Bargmann index $q$% . They share a common structure with the $G$-function of the one-photon and two-photon quantum Rabi
We propose a scheme for quantum cryptography that uses the squeezing phase of a two-mode squeezed state to transmit information securely between two parties. The basic principle behind this scheme is the fact that each mode of the squeezed field by i
We present a theoretical proposal for a physical implementation of entanglement concentration and purification protocols for two-mode squeezed microwave photons in circuit quantum electrodynamics (QED). First, we give the description of the cross-Ker
We analyze the stabilizability of entangled two-mode Gaussian states in three benchmark dissipative models: local damping, dissipators engineered to preserve two-mode squeezed states, and cascaded oscillators. In the first two models, we determine pr