ترغب بنشر مسار تعليمي؟ اضغط هنا

Deterministic Secure Communications using Two-Mode Squeezed States

92   0   0.0 ( 0 )
 نشر من قبل Alberto Marino
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a scheme for quantum cryptography that uses the squeezing phase of a two-mode squeezed state to transmit information securely between two parties. The basic principle behind this scheme is the fact that each mode of the squeezed field by itself does not contain any information regarding the squeezing phase. The squeezing phase can only be obtained through a joint measurement of the two modes. This, combined with the fact that it is possible to perform remote squeezing measurements, makes it possible to implement a secure quantum communication scheme in which a deterministic signal can be transmitted directly between two parties while the encryption is done automatically by the quantum correlations present in the two-mode squeezed state.



قيم البحث

اقرأ أيضاً

A quantum memory for light is a key element for the realization of future quantum information networks. Requirements for a good quantum memory are (i) versatility (allowing a wide range of inputs) and (ii) true quantum coherence (preserving quantum i nformation). Here we demonstrate such a quantum memory for states possessing Einstein-Podolsky-Rosen (EPR) entanglement. These multi-photon states are two-mode squeezed by 6.0 dB with a variable orientation of squeezing and displaced by a few vacuum units. This range encompasses typical input alphabets for a continuous variable quantum information protocol. The memory consists of two cells, one for each mode, filled with cesium atoms at room temperature with a memory time of about 1msec. The preservation of quantum coherence is rigorously proven by showing that the experimental memory fidelity 0.52(2) significantly exceeds the benchmark of 0.45 for the best possible classical memory for a range of displacements.
322 - Liwei Duan , Shu He , D. Braak 2014
The two-mode quantum Rabi model with bilinear coupling is studied using extended squeezed states. We derive $G$-functions for each Bargmann index $q$% . They share a common structure with the $G$-function of the one-photon and two-photon quantum Rabi models. The regular spectrum is given by zeros of the $G$-function while the conditions for the presence of doubly degenerate (exceptional) eigenvalues are obtained in closed form through the lifting property. The simple singularity structure of the $G$-function allows to draw conclusions about the distribution of eigenvalues along the real axis and to understand the spectral collapse phenomenon when the coupling reaches a critical value.
57 - Ryo Namiki 2020
Two-mode squeezed number states (TMSNS) are natural generalization of two-mode squeezed vacuum states. It has been known that every TMSNS is entangled whenever the squeezing parameter is non-zero. For a pair of entangled pure states Nielsens majoriza tion theorem tells us whether one state can be transformed into the other state through local operation and classical communication based on the majorization property on their probability distributions of Schmidt bases. In this report we find two examples of majorization relations for a set of TMSNS.
Quantum communication protocols based on nonclassical correlations can be more efficient than known classical methods and offer intrinsic security over direct state transfer. In particular, remote state preparation aims at the creation of a desired a nd known quantum state at a remote location using classical communication and quantum entanglement. We present an experimental realization of deterministic continuous-variable remote state preparation in the microwave regime over a distance of 35 cm. By employing propagating two-mode squeezed microwave states and feedforward, we achieve the remote preparation of squeezed states with up to 1.6 dB of squeezing below the vacuum level. We quantify security in our implementation using the concept of the one-time pad. Our results represent a significant step towards microwave quantum networks between superconducting circuits.
We present a new technique for the detection of two-mode squeezed states of light that allows for a simple characterization of these quantum states. The usual detection scheme, based on heterodyne measurements, requires the use of a local oscillator with a frequency equal to the mean of the frequencies of the two modes of the squeezed field. As a result, unless the two modes are close in frequency, a high-frequency shot-noise-limited detection system is needed. We propose the use of a bichromatic field as the local oscillator in the heterodyne measurements. By the proper selection of the frequencies of the bichromatic field, it is possible to arbitrarily select the frequency around which the squeezing information is located, thus making it possible to use a low-bandwidth detection system and to move away from any excess noise present in the system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا