ﻻ يوجد ملخص باللغة العربية
We show that the jet structure of gamma-ray bursts (GRBs) can be investigated with the tail emission of the prompt GRB. The tail emission which we consider is identified as a steep-decay component of the early X-ray afterglow observed by the X-ray Telescope onboard Swift. Using a Monte Carlo method, we derive, for the first time, the distribution of the decay index of the GRB tail emission for various jet models. The new definitions of the zero of time and the time interval of a fitting region are proposed. These definitions for fitting the light curve lead us an unique definition of the decay index, which is useful to investigate the structure of the GRB jet. We find that if the GRB jet has a core-envelope structure, the predicted distribution of the decay index of the tail has a wide scatter and has multiple peaks, which cannot be seen for the case of the uniform and the Gaussian jet. Therefore, the decay index distribution tells us the information on the jet structure. Especially, if we observe events whose decay index is less than about 2, both the uniform and the Gaussian jet models will be disfavored according to our simulation study.
If X-ray flashes (XRFs) and X-ray rich Gamma-ray Bursts(XRRGs) have the same origin with Gamma-ray Bursts (GRBs) but are viewed from larger angles of structured jets, their early afterglows may differ from those of GRBs. When the ultra-relativistic o
We present a multiwavelength analysis of 63 Gamma-Ray Bursts observed with the worlds three largest robotic optical telescopes, the Liverpool and Faulkes Telescopes (North and South). Optical emission was detected for 24 GRBs with brightnesses rangin
For gamma-ray bursts (GRBs) with a plateau phase in the X-ray afterglow, a so called $L-T-E$ correlation has been found which tightly connects the isotropic energy of the prompt GRB ($E_{gamma,rm{iso}}$) with the end time of the X-ray plateau ($T_{a}
The discovery of multiband afterglows definitely shows that most $gamma$-ray bursts are of cosmological origin. $gamma$-ray bursts are found to be one of the most violent explosive phenomena in the Universe, in which astonishing ultra-relativistic mo
The nature of the shallow decay phase in the X-ray afterglow of the gamma-ray burst (GRB) is not yet clarified. We analyze the data of early X-ray afterglows of 26 GRBs triggered by Burst Alert Telescope onboard Neil Gehrels Swift Observatory and sub