ﻻ يوجد ملخص باللغة العربية
For gamma-ray bursts (GRBs) with a plateau phase in the X-ray afterglow, a so called $L-T-E$ correlation has been found which tightly connects the isotropic energy of the prompt GRB ($E_{gamma,rm{iso}}$) with the end time of the X-ray plateau ($T_{a}$) and the corresponding X-ray luminosity at the end time ($L_{X}$). Here we show that there is a clear redshift evolution in the correlation. Furthermore, since the power-law indices of $L_{X}$ and $E_{gamma,rm{iso}}$ in the correlation function are almost identical, the $L-T-E$ correlation is insensitive to cosmological parameters and cannot be used as a satisfactory standard candle. On the other hand, based on a sample including 121 long GRBs, we establish a new three parameter correlation that connects $L_{X}$, $T_{a}$ and the spectral peak energy $E_{rm{p}}$, i.e. the $L-T-E_{rm{p}}$ correlation. This correlation strongly supports the so-called Combo-relation established by Izzo et al. (2015). After correcting for the redshift evolution, we show that the de-evolved $L-T-E_{rm{p}}$ correlation can be used as a standard candle. By using this correlation alone, we are able to constrain the cosmological parameters as $Omega_{m}=0.389^{+0.202}_{-0.141}$ ($1sigma$) for the flat $Lambda$CDM model, or $Omega_{m}=0.369^{+0.217}_{-0.191}$, $w=-0.966^{+0.513}_{-0.678}$ ($1sigma$) for the flat $w$CDM model. Combining with other cosmological probes, more accurate constraints on the cosmology models are presented.
We study thermal emission from circumstellar structures heated by gamma-ray burst (GRB) radiation and ejecta and calculate its contribution to GRB optical and X-ray afterglows using the modified radiation hydro-code small STELLA. It is shown that the
Gamma-ray burst (GRB) afterglows have provided important clues to the nature of these massive explosive events, providing direct information on the nearby environment and indirect information on the central engine that powers the burst. We report the
The optical light-curves of GRB afterglows display either peaks or plateaus. We identify 16 afterglows of the former type, 17 of the latter, and 4 with broad peaks, that could be of either type. The optical energy release of these two classes is si
X-ray absorption of $gamma$-ray burst (GRB) afterglows is prevalent yet poorly understood. X-ray derived neutral hydrogen column densities ($N_{rm H}$) of GRB X-ray afterglows show an increase with redshift, which might give a clue for the origin of
We derive basic analytical results for the timing and decay of the GRB-counterpart and delayed-afterglow light-curves for a brief emission episode from a relativistic surface endowed with angular structure, consisting of a uniform Core of size theta_