ﻻ يوجد ملخص باللغة العربية
We present experimental and theoretical results showing the improved beam quality and reduced divergence of an atom laser produced by an optical Raman transition, compared to one produced by an RF transition. We show that Raman outcoupling can eliminate the diverging lens effect that the condensate has on the outcoupled atoms. This substantially improves the beam quality of the atom laser, and the improvement may be greater than a factor of ten for experiments with tight trapping potentials. We show that Raman outcoupling can produce atom lasers whose quality is only limited by the wavefunction shape of the condensate that produces them, typically a factor of 1.3 above the Heisenberg limit.
We propose an approach to quantum phase estimation that can attain precision near the Heisenberg limit without requiring single-particle-resolved state detection. We show that the one-axis twisting interaction, well known for generating spin squeezin
We consider the interaction of atomic hydrogen, in its ground state, with an electromagnetic pulse whose duration is fixed in terms of the number of optical cycles. We study the probability of excitation of the atom in the static field limit i.e. for
The use of quantum resources can provide measurement precision beyond the shot-noise limit (SNL). The task of ab initio optical phase measurement---the estimation of a completely unknown phase---has been experimentally demonstrated with precision bey
To quantify quantum optical coherence requires both the particle- and wave-natures of light. For an ideal laser beam [1,2,3], it can be thought of roughly as the number of photons emitted consecutively into the beam with the same phase. This number,
We describe a scheme, operating in a manner analogous to a reversed Raman output coupler, for measuring the phase-sensitive quadrature statistics of an atom laser beam. This scheme allows for the transferral of the atomic field statistics to an optic