ﻻ يوجد ملخص باللغة العربية
We propose an approach to quantum phase estimation that can attain precision near the Heisenberg limit without requiring single-particle-resolved state detection. We show that the one-axis twisting interaction, well known for generating spin squeezing in atomic ensembles, can also amplify the output signal of an entanglement-enhanced interferometer to facilitate readout. Applying this interaction-based readout to oversqueezed, non-Gaussian states yields a Heisenberg scaling in phase sensitivity, which persists in the presence of detection noise as large as the quantum projection noise of an unentangled ensemble. Even in dissipative implementations -- e.g., employing light-mediated interactions in an optical cavity or Rydberg dressing -- the method significantly relaxes the detection resolution required for spectroscopy beyond the standard quantum limit.
The use of quantum resources can provide measurement precision beyond the shot-noise limit (SNL). The task of ab initio optical phase measurement---the estimation of a completely unknown phase---has been experimentally demonstrated with precision bey
We present experimental and theoretical results showing the improved beam quality and reduced divergence of an atom laser produced by an optical Raman transition, compared to one produced by an RF transition. We show that Raman outcoupling can elimin
Single-photon pulses cannot be generated on demand, due to incompatible requirements of positive frequencies and positive times. Resulting states therefore contain small probabilities for multiphotons. We derive upper and lower bounds for the maximum
The interference between coherent and squeezed vacuum light can produce path entangled states with very high fidelities. We show that the phase sensitivity of the above interferometric scheme with parity detection saturates the quantum Cramer-Rao bou
Using an analytically solvable model, we show that a qubit array-based detector allows to achieve the fundamental Heisenberg limit in detecting single photons. In case of superconducting qubits, this opens new opportunities for quantum sensing and communications in the important microwave range.