تعد نظرية الحاصل من الأدوات الرياضية الحديثة التي أثارت اهتمام الباحثين في كل المجالات الرياضية حيث تم استخدامها في حل الكثير من المشاكل الرياضية التي كانت إلى وقت قريب غير قابلة للحل أو حلها يحتاج إلى الكثير من الجهد و الوقت.
Theory Resultant are considered as one of the new mathematical
tools that motivate the researchers in all mathematical
domains.They use in solving many of mathematical problems.
المراجع المستخدمة
N. K. Bose, J. P. Guiver, (1985), Multidimensional Systems Theory: progress, directions, and open problems in multidimensional systems, ch.6, 184-232
M. Elkadi, B. Mourrain, (1998), Some Applications of Bezoutians in Effective Algebraic Geometry, inria-00073109, version 1
I. V. Kapalin and V. V. Fomichev( October 20, 2010 ) Properties of a Generalized Sylvester Matrix, Faculty of Computational Mathematics and Cybernetics, Moscow State University, Moscow, 119991 Russia
تعد قواعد جروبنر Gröbner Bases من الأدوات الرياضية الحديثة التي أثارت اهتمام الباحثين في كل المجالات الرياضية حيث تم استخدامها في حل الكثير من المشاكل الرياضية التي كانت إلى وقت قريب غير قابلة للحل أو حلها يحتاج إلى الكثير من الجهد و الوقت , إن قواعد
استخدمنا في هذه المقالة معادلة هاملتون- جاكوبي المعممة لدراسة الحركة النسبية للإلكترون في الحقل الكهرومغنطيسي الكيفي، اعتماداً على تابع الفعل (مبدأ الفعل الأصغري)، مع الأخذ بالحسبان العلاقة بين تابعي هاملتون و لاغرانج ، بدءاً من معادلتي الحركة و الطا
حُضر في هذا البحث عدة عينات من بوليمير مشترك (أنيلين – فينول – فور ألدهيد) بطريقة البلمرة
التكاثفية انطلاقاً من الأنيلين و الفينول و الفور ألدهيد و بوجود حفاز من محلول الأمونيا بتراكيز مختلفة.
ضُبطت شروط تفاعل البلمرة (درجة الحرارة, زمن التفاعل, الحفاز) .
قًمنا في هذا البحث بدراسة مسألة مشهورة تدعى بمسألة اليعقوبي, حيث قمنا
بصياغة مجموعة نتائج و مبرهنات في إطار هذه المسألة, فتمكنا من الوصول
إلى برهان على صحة المسألة في حالة خاصة باستخدام برنامج الMaple يمكن
من خلاله الوصول إلى الحالة العامة, و ذلك عبر اختزال الناتج لكثيرات حدود عامة.
تمّ في هذا العمل دراسة بعض مركبات اليورنيوم باستخدام المجموعة القاعدية SDDALL ضمن طريقة B3LYB التي تعتمد على نظرية تابعية الكثافة الإلكترونية (DFT), و ذلك لما تملكه هذه الطريقة من دقة عالية و موثوقية كبيرة بالنسبة للنتائج التي يتم الحصول عليها.