وقد تبين أن التنظيم العديزي لتحسين أداء تعميم نماذج التعلم العميق في مهام معالجة اللغة الطبيعية المختلفة. تعمل الأعمال الموجودة عادة الطريقة كأفضل لعبة مبلغ صفر، والتي تم حلها من خلال خوارزميات نزول / صعود التدرج المتناوب. مثل هذه الصياغة يعامل اللاعبين والدفاع عن اللاعبين على قدم المساواة، وهو أمر غير مرغوب فيه لأن اللاعب المدافع فقط يساهم في أداء التعميم. لمعالجة هذه المسألة، نقترح بنظام Stackelberg الخصم (الملح)، الذي يصوغ التنظيم العديزي كأرعاب Stackelberg. يستحث هذا الصيغة منافسة بين قائد ومتابعته، حيث يولد التابع الاضطرابات، والقائد يدرب النموذج المعني بالاضطرابات. تختلف عن الأساليب التقليدية، في السلط، الزعيم في وضع مفيد. عندما يتحرك القائد، فإنه يتعرف على استراتيجية التابع ويأخذ نتائج التابع المتوقعة في الاعتبار. تمكننا ميزة الزعيم هذه من تحسين النموذج المناسب للبيانات غير المضطربة. يتم التقاط المعلومات الاستراتيجية للزعيم من قبل التدرج من Stackelberg، والتي يتم الحصول عليها باستخدام خوارزمية غير مثيرة. تظهر نتائجنا التجريبية على مجموعة من الترجمة الآلية ومهام فهم اللغة الطبيعية أن الملح يتفوق على خطوط خطوط الأساس بين المخدرات الموجودة في جميع المهام. رمز لدينا هو متاح علنا.
Adversarial regularization has been shown to improve the generalization performance of deep learning models in various natural language processing tasks. Existing works usually formulate the method as a zero-sum game, which is solved by alternating gradient descent/ascent algorithms. Such a formulation treats the adversarial and the defending players equally, which is undesirable because only the defending player contributes to the generalization performance. To address this issue, we propose Stackelberg Adversarial Regularization (SALT), which formulates adversarial regularization as a Stackelberg game. This formulation induces a competition between a leader and a follower, where the follower generates perturbations, and the leader trains the model subject to the perturbations. Different from conventional approaches, in SALT, the leader is in an advantageous position. When the leader moves, it recognizes the strategy of the follower and takes the anticipated follower's outcomes into consideration. Such a leader's advantage enables us to improve the model fitting to the unperturbed data. The leader's strategic information is captured by the Stackelberg gradient, which is obtained using an unrolling algorithm. Our experimental results on a set of machine translation and natural language understanding tasks show that SALT outperforms existing adversarial regularization baselines across all tasks. Our code is publicly available.
المراجع المستخدمة
https://aclanthology.org/
نحن نحقق في ما إذا كان هناك نموذج يمكن أن يتعلم اللغة الطبيعية مع الحد الأدنى من المدخلات اللغوية من خلال التفاعل.معالجة هذا السؤال، نقوم بتصميم وتنفيذ لعبة تعليمية تفاعلية تتعلم التمثيلات الدلالية المنطقية تكوين.تتيح لنا لعبتنا استكشاف فوائد الاستدل
في هذه الورقة، فإننا نطبق غير المدعومة غير المدعومة باعتبارها مهمة جديدة في تحريض الهيكل النحوي، والتي مفيدة لفهم الهياكل اللغوية للغات البشرية وكذلك معالجة لغات الموارد المنخفضة.نقترح اتباع نهج نقل المعرفة بأنه يسخر بشكل مسبق تسميات القطعة من نماذج
الاستعراضات عبر الإنترنت هي جانب أساسي للتسوق عبر الإنترنت لكل من العملاء وتجار التجزئة. ومع ذلك، فإن العديد من المراجعات الموجودة على الإنترنت تفتقر إلى الجودة أو المعلوماتية أو المساعدة. في كثير من الحالات، يقودون العملاء نحو آراء إيجابية أو سلبية
تصنيف النص التجريدي هو مشكلة مدروسة على نطاق واسع ولها تطبيقات واسعة. في العديد من مشاكل العالم الحقيقي، يعد عدد النصوص الخاصة بنماذج تصنيف التدريب محدودا، مما يجعل هذه النماذج عرضة للجيش. لمعالجة هذه المشكلة، نقترح SSL-REG، نهج التنظيم المعتمد على ا
استخراج العلاقات غير المدعومة من قبل أزواج كيان التجمع التي لها نفس العلاقات في النص. تقوم بعض الأساليب المتنوعة (VAE) المتنوعة (VAE) بتدريب نموذج استخراج العلاقة كترفيه يولد تصنيفات العلاقة. يتم تدريب وحدة فك الترميز جنبا إلى جنب مع التشفير لإعادة ب