دفعت التطورات الحديثة في الترجمة الآلية العصبية (NMT) جودة أنظمة الترجمة الآلية إلى النقطة التي أصبحوا فيها اعتمادها على نطاق واسع لبناء أنظمة تنافسية. ومع ذلك، لا يزال هناك عدد كبير من اللغات التي لم تجنيها بعد فوائد NMT. في هذه الورقة، نقدم أول دراسة حالة واسعة النطاق للتطبيق العملي ل MT في عائلة اللغة التركية من أجل تحقيق مكاسب NMT للغات التركية تحت الموارد عالية الموارد إلى سيناريوهات منخفضة للغاية الموارد. بالإضافة إلى تقديم تحليل واسع النطاق يحدد الاختناقات نحو بناء أنظمة تنافسية لتحسين ندرة البيانات، فإن دراستنا لديها العديد من المساهمات الرئيسية، بما في ذلك، طن موازي كبير يغطي 22 لغة تركية تتكون من مجموعات بيانات عامة مشتركة مع مجموعات بيانات جديدة من ما يقرب من 1.4 مليون جمل موازية، 2) خطوط أساس ثنائية اللغة ل 26 أزواج لغة، III) مجموعات اختبار عالية الجودة الرواية في ثلاثة مجالات ترجمة مختلفة و 4 درجات التقييم البشري. سيتم إصدار جميع النماذج والبرامج النصية والبيانات للجمهور.
Recent advances in neural machine translation (NMT) have pushed the quality of machine translation systems to the point where they are becoming widely adopted to build competitive systems. However, there is still a large number of languages that are yet to reap the benefits of NMT. In this paper, we provide the first large-scale case study of the practical application of MT in the Turkic language family in order to realize the gains of NMT for Turkic languages under high-resource to extremely low-resource scenarios. In addition to presenting an extensive analysis that identifies the bottlenecks towards building competitive systems to ameliorate data scarcity, our study has several key contributions, including, i) a large parallel corpus covering 22 Turkic languages consisting of common public datasets in combination with new datasets of approximately 1.4 million parallel sentences, ii) bilingual baselines for 26 language pairs, iii) novel high-quality test sets in three different translation domains and iv) human evaluation scores. All models, scripts, and data will be released to the public.
المراجع المستخدمة
https://aclanthology.org/
التقييم البشري التجريدي لأنظمة الترجمة عالية الجودة الحديثة هي مشكلة صعبة، وهناك أدلة متزايدة على أن إجراءات التقييم غير الكافية يمكن أن تؤدي إلى استنتاجات خاطئة. بينما كان هناك بحث كبير في التقييم البشري، لا يزال الحقل يفتقر إلى إجراء قياسي شائع. كخ
يقدم هذا العمل ITIHASA، مجموعة بيانات ترجمة واسعة النطاق تحتوي على 93،000 زوج من Sanskrit Shlokas وترجماتها الإنجليزية.يتم استخراج شلوكاس من اثنين من الملصفات الهندية بمعنى.، رامايانا وماهاوصفنا أولا الدافع وراء عمالة مثل هذه البيانات ومتابعة التحليل
يظهر التطوير الحديث في NLP اتجاها قويا نحو تكرير النماذج المدربة مسبقا مع مجموعة بيانات خاصة بالمجال. هذا هو الحال بشكل خاص لتوليد الاستجابة حيث تلعب العاطفة دورا مهما. ومع ذلك، لا تزال مجموعات البيانات المتعاطفية الحالية صغيرة وتأخير الجهود البحثية
تقدم هذه الورقة MediaSum، مجموعة بيانات مقابلة الوسائط على نطاق واسع تتكون من نصوص 463.6 كيلو بايت مع ملخصات إبتياج.لإنشاء هذه البيانات، نجمع مخالفات المقابلة من NPR و CNN وتوظيف نظرة عامة وأوصاف موضوع كملخصات.مقارنة مع الشركة العامة القائمة للحصول ع
دقة Aqueference Coreference Coreence هي مهمة مؤسسية لتطبيقات NLP التي تنطوي على معالجة النص المتعدد. ومع ذلك، فإن شركة كوربيا الحالية لهذه المهمة نادرة وصغيرة نسبيا، بينما تعلق فقط مجموعات من المستندات المتواضعة فقط من الوثائق التي تنتمي إلى نفس المو