ترغب بنشر مسار تعليمي؟ اضغط هنا

أوسكار: تصحيح الفضاء الفرعي المتعامدة وتصحيح التحيزات في Word Embeddings

OSCaR: Orthogonal Subspace Correction and Rectification of Biases in Word Embeddings

294   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

من المعروف أن تمثيلات اللغة تحمل تحيزات نمطية ونتيجة لذلك، تؤدي إلى تنبؤات متحيزة في مهام المصب.في حين أن الطرق الحالية فعالة في التحيزات المخفئ عن طريق الإسقاط الخطي، فإن هذه الأساليب عدوانية للغاية: لا تزيل التحيز فقط، ولكن أيضا محو المعلومات القيمة من Word Adgeddings.نقوم بتطوير تدابير جديدة لتقييم الاحتفاظ بالمعلومات المحددة التي توضح مفاضلة بين إزالة التحيز والاحتفاظ بالمعلومات.لمعالجة هذا التحدي، نقترح أوسكار (تصحيح الفضاء الفرعي المتعامد والتصحيح)، وهي طريقة تخفيف التحيز التي تركز على تحطيم الجمعيات المتحيزة بين المفاهيم بدلا من إزالة المفاهيم بالجملة.تشير تجاربنا في التحيزات بين الجنسين إلى أن أوسكار هو نهج متوازن جيدا يضمن أن يتم الاحتفاظ بالمعلومات الدلالية في المدينات والتحيز بشكل فعال.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

تستخدم Word Embeddings على نطاق واسع في معالجة اللغة الطبيعية (NLP) لمجموعة واسعة من التطبيقات. ومع ذلك، فقد ثبت باستمرار أن هذه المدينات تعكس نفس التحيزات البشرية الموجودة في البيانات المستخدمة لتدريبها. معظم مؤشرات التحيز المنصوص عليها للكشف عن تحي ز Word Embeddings مؤشرات قائمة على أساس مقياس التشابه الجيبلي. في هذه الدراسة، ندرس آثار تدابير التشابه المختلفة وكذلك التقنيات الوصفية الأخرى أكثر من المتوسط ​​في قياس تحيزات تضمين الكلمات السياقية وغير السياقية. نظهر أن حجم التحيزات المكشوفة في Word Embeddings يعتمد على تدابير الإحصاءات الوصفية والتشابه المستخدمة لقياس التحيز. وجدنا أنه خلال الفئات العشرة من اختبارات جمعية تضمين Word، تكشف مسافة Mahalanobis عن أصغر التحيز، وتكشف مسافة Euclidean عن أكبر تحيز في Word Ageddings. بالإضافة إلى ذلك، تكشف النماذج السياقية عن تحيزات أقل حدة من نماذج تضمين الكلمة غير السياقية.
كلمة تضمين خرائط الكلمات إلى ناقلات الأرقام الحقيقية.وهي مشتقة من كوربوس كبيرة ومن المعروف أنها تلتقط المعرفة الدلالية من الجثة.يعد Word Embedding مكونا حاسما للعديد من أساليب التعلم العميق الحديثة.ومع ذلك، فإن إنشاء Word Good Legeddings هو تحدي خاص لغات الموارد المنخفضة مثل النيبالية بسبب عدم توفر كوربوس نص كبير.في هذه الورقة، نقدم NPVEC1 والتي تتألف من 25 كلمة نيبالية من النيبالية التي اشتوعناها من كوربوس كبيرة باستخدام القفازات و Word2VEC و FastText و Bert.ونحن نقدم كذلك التقييمات الجوهرية والخارجية لهذه الأشرطة باستخدام مقاييس وأساليب راسخة.يتم تدريب هذه النماذج باستخدام الرموز 279 مليون كلمة وهي أكبر embeddings مدربة على الإطلاق للغة النيبالية.علاوة على ذلك، لقد جعلنا هذه الأشرطة المتاحة للجمهور لتسريع تطوير طلبات معالجة اللغة الطبيعية (NLP) في النيبالية.
نقدم Query2Prod2VEC، وهو نموذج يسبب تمثيلات معجمية للبحث عن المنتج في تضمين المنتج: في نموذجنا، يعني المعنى رسم خرائط بين الكلمات والمساحة الكامنة من المنتجات في متجر رقمي.نستفيد من جلسات التسوق لتعلم المساحة الأساسية واستخدام التعليقات التوضيحية للت جارة لبناء التظليلات المعجمية للتقييم: تظهر تجاربنا أن طرازنا أكثر دقة من التقنيات المعروفة من أدب NLP و IR.أخيرا، نشدد على أهمية كفاءة البيانات للبحث عن المنتج خارج عمالقة البيع بالتجزئة، وتسليط الضوء على كيفية تناسب Query2Prod2VEC قيودا عملية التي يواجهها معظم الممارسين.
تحديد العلاقات بين المؤلفين بين المؤلفين ذات أهمية مركزية لدراسة الأدبيات. نقوم بالإبلاغ عن تحليل تجريبي بين التقاطعات التعليمية في الأدبيات اللاتينية الكلاسيكية باستخدام نماذج تضمين كلمة. لتمكين التقييم الكمي لطرق البحث Intertextuxucture، نرفع مجموع ة بيانات جديدة من 945 موازية معروفة تم رسمها من المنحة التقليدية على الشعر الملحمي اللاتيني. نقوم بتدريب نموذج Word2VEC الأمثل على كائن كبير من اللاتينية Lemmatized، والذي يحقق أداء حديثة للكشف عن المرادف والتفوق بطريقة معجمية تستخدم على نطاق واسع للبحث Intertextual. ثم نوضح بعد ذلك أن تضمينات التدريب في كورسيا الصغيرة جدا يمكن أن تلتقط الجوانب البارزة للأسلوب الأدبي وتطبيق هذا النهج على تكرار دراسة Intertextual السابقة ل Livy المؤرخ الروماني، والتي اعتمدت على ميزات أنالومترية يدوية باليد. تقدم نتائجنا تطوير الموارد الحسابية الأساسية لغلق رئيسي رئيسي وتسليط الضوء على شارع إنتاجي للتعاون متعدد التخصصات بين دراسة الأدب و NLP.
نقدم نهجا جديدا لتجانس وتحسين جودة Adgeddings Word.نحن نعتبر طريقة لتدبير تضمين كلمة تم تدريبها على نفس الكملات ولكن مع تهيئة مختلفة.نقوم بتعريف جميع النماذج إلى مساحة متجهية مشتركة باستخدام تطبيق فعال لإجراءات تحليل Scristes (GPA) المعمم (GPA)، تستخ دم سابقا في ترجمة Word متعددة اللغات.يوضح تمثيل الكلمات لدينا تحسينات متسقة على النماذج الأولية وكذلك متوسطها التبسيط، على مجموعة من المهام.نظرا لأن التمثيلات الجديدة أكثر استقرارا وموثوقة، فهناك تحسن ملحوظ في تقييمات كلمة نادرة.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا