ترغب بنشر مسار تعليمي؟ اضغط هنا

استكشاف صعوبة المهمة لاستخراج علاقة ذات طلقة قليلة

Exploring Task Difficulty for Few-Shot Relation Extraction

377   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

يركز استخراج علاقات قليلة (FSRE) على الاعتراف بعلاقات جديدة من خلال التعلم مع مجرد حفنة من الحالات المشروح.تم اعتماد التعلم التلوي على نطاق واسع لمثل هذه المهمة، والتي تتدرب على إنشاء مهام قليلة من الرصاص بشكل عشوائي لتعلم تمثيلات بيانات عامة.على الرغم من النتائج المثيرة للإعجاب التي تحققت، لا تزال النماذج الحالية تؤدي دون التفاادم عند التعامل مع مهام FSRE الثابتة، حيث تكون العلاقات محببة ومتشابهة لبعضها البعض.نقول هذا إلى حد كبير لأن النماذج الحالية لا تميز المهام الثابتة من سهلة في عملية التعلم.في هذه الورقة، نقدم نهجا جديدا يعتمد على التعلم المتعاقل الذي يتعلم تمثيلات أفضل من خلال استغلال معلومات الملصقات العلاقة.نحن أيضا تصميم طريقة تسمح للنموذج بتعلم تكيف كيفية التركيز على المهام الثابتة.تجارب على مجموعة بيانات قياسية توضح فعالية طريقتنا.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

استخراج الأحداث على مستوى المستند أمر بالغ الأهمية لمختلف مهام معالجة اللغة الطبيعية لتوفير معلومات منظمة.النهج الحالية عن طريق النمذجة المتسلسلة إهمال الهياكل المنطقية المعقدة للنصوص الطويلة.في هذه الورقة، نستفيد بين تفاعلات الكيان وتفاعلات الجملة خ لال المستندات الطويلة وتحويل كل وثيقة إلى رسم بياني غير مرمى غير مسبهب من خلال استغلال العلاقة بين الجمل.نقدم مجتمع الجملة لتمثيل كل حدث كشركة فرعية.علاوة على ذلك.توضح التجارب أن إطارنا يحقق نتائج تنافسية على الأساليب الحديثة على مجموعة بيانات استخراج الأحداث على مستوى الوثيقة على نطاق واسع.
تهدف استخراج العلاقات المنخفضة الموارد (LRE) إلى استخراج حقائق العلاقة من كورسا محدودة المسمى عندما تشريح الإنسان نادرة. تعمل الأعمال الموجودة إما استخدام مخطط التدريب الذاتي لتوليد ملصقات زائفة ستتسبب في مشكلة الانجراف التدريجي، أو نظام التعلم التلو ي الاستفادي الذي لا يتطلب التغيلات بشكل صريح. لتخفيف التحيز الاختيار بسبب عدم وجود حلقات ردود الفعل في نماذج التعلم الحالية، قمنا بتطوير طريقة تعليمية لتعزيز التعزيز التدرج لتشجيع بيانات الملصقات الزائفة لتقليد اتجاه نزول التدرج على البيانات المسمى و Bootstrap إمكانية التحسين من خلال التجربة والخطأ. نقترح أيضا إطارا يسمى Gradlre، الذي يتعامل مع سيناريوهات رئيسيين في استخراج علاقة الموارد المنخفضة. إلى جانب السيناريو حيث تكون البيانات غير المسبقة كافية، يتعامل Gradlre الموقف حيث لا تتوفر بيانات غير قابلة للتحقيق، من خلال استغلال طريقة تكبير سياقيا لتوليد البيانات. النتائج التجريبية على مجموعات بيانات عامة تثبت فعالية الخريجين في استخراج العلاقات المنخفضة للموارد عند مقارنة مع الأساس.
في السنوات الأخيرة، تم تطبيق نماذج قليلة بالرصاص بنجاح في مجموعة متنوعة من مهام NLP.هان وآخرون.(2018) أدخل إطارا متعدد الطلقات التعلم لتصنيف العلاقة، ومنذ ذلك الحين، تجاوزت عدة نماذج الأداء البشري في هذه المهمة، مما يؤدي إلى الانطباع بأن التصنيف القل يل من الطلقات يتم حلها.في هذه الورقة، نلقي نظرة أعمق على فعالية نماذج التصنيف القليلة القليلة في إعداد استخراج العلاقات الأكثر شيوعا، وإظهار أن مقاييس التقييم القليلة النموذجية تحجب تقلب واسع في الأداء عبر العلاقات.على وجه الخصوص، نجد أن نماذج تصنيف العلاقات بين الفنون القليلة تعتمد بشكل مفرط على معلومات نوع الكيان، واقتراح تعديلات على روتين التدريب لتشجيع النماذج على التمييز بشكل أفضل بين العلاقات التي تنطوي على أنواع كيانات مماثلة.
المستندات العلمية مليئة بالقياسات المذكورة في تنسيقات وأنماط مختلفة. على هذا النحو، في وثيقة ذات كميات متعددة والكيانات المقاسة، فإن مهمة ربط كل كمية إلى كيانها المقاس المقابل أمر صعب. وبالتالي، من الضروري الحصول على طريقة لاستخراج جميع القياسات والس مات ذات الصلة بكفاءة. تحقيقا لهذه الغاية، في هذه الورقة، نقترح نموذجا جديدا لمهمة استخراج العلاقات المتعلقة بالقياس (MRE) هدفه هو التعرف على العلاقة بين الكيانات والكميات والظروف المقاسة المذكورة في وثيقة. توظف نموذجنا هندسا عميقا قائمة على الترجمة من أجل تحقيق الكلمات المهمة ديناميكيا في الوثيقة لتصنيف العلاقة بين زوج من الكيانات. علاوة على ذلك، نقدم تقنية تنظيمية جديدة تعتمد على اختناق المعلومات (IB) لتصفية المعلومات الصاخبة من المجموعة الناجمة عن الكلمات المهمة. تجاربنا على مجموعة بيانات مهمة Semeval 2021 الأخيرة تكشف عن فعالية النموذج المقترح.
نستكشف عدد قليل من التعلم (FSL) لتصنيف العلاقة (RC).مع التركيز على السيناريو الواقعي من FSL، والتي قد لا تنتمي مثيل الاختبار إلى أي من الفئات المستهدفة (لا شيء أعلاه، [nota])، فإننا أولا إعادة النظر في هيكل مجموعة البيانات الشعبية الأخيرة ل FSL، مشير ا إليهاتوزيع البيانات غير واقعية.لعلاج هذا، نقترح منهجية جديدة لاستكشاف بيانات اختبار القليل من الطوائم بشكل أكثر واقعية من مجموعات البيانات المتوفرة ل RC الإشراف، وتطبيقها على مجموعة البيانات المشبوكة.هذا ينتج معيارا صعبا جديدا ل FSL-RC، في أي حالة من النماذج الفنية تظهر أداء ضعيف.بعد ذلك، نقوم بتحليل مخططات التصنيف ضمن النهج الأقرب القائم على الإرشاد القائم على التضمين FSL، فيما يتعلق بالقيود التي يفرضونها على مساحة التضمين.الناجمة عن هذا التحليل، نقترح مخطط تصنيف جديد يتمثل فيه فئة NOTA كأداة مستفادة، مبين تجريبي ليكون خيارا جذابا ل FSL.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا