تحتوي العديد من مجموعات بيانات NLP الجماعية على القطع الأثرية المنهجية التي تم تحديدها فقط بعد اكتمال جمع البيانات. يجب أن يسهل تحديد الهوية السابقة من هذه القضايا إنشاء بيانات تدريبية وتقييم عالية الجودة. نحاول ذلك عن طريق تقييم البروتوكولات التي يعمل فيها اللغويين الخبراء في الحلقة "أثناء جمع البيانات لتحديد هذه المشكلات ومعالجتها عن طريق ضبط تعليمات المهام والحوافز. باستخدام الاستدلال اللغوي الطبيعي كحالة اختبار، قارن ثلاثة بروتوكولات جمع البيانات: (1) بروتوكول أساسي مع عدم وجود تورط لغوي، (2) تدخل لغوي في حلقة مع قيود محدثة بشكل متطور على مهمة الكتابة، و (3) تمديد يضيف التفاعل المباشر بين اللغويين والملائقيين عبر غرفة الدردشة. نجد أن المشاركة اللغوية لا تؤدي إلى زيادة الدقة على مجموعات اختبار خارج المجال مقارنة مع خط الأساس، وإضافة غرفة من الدردشة ليس لها تأثير على البيانات. ومع ذلك، فإن المشاركة اللغوية تؤدي إلى بيانات تقييم أكثر تحديا ودقة أعلى في بعض مجموعات التحدي، مما يدل على فوائد دمج تحليل الخبراء أثناء جمع البيانات.
Many crowdsourced NLP datasets contain systematic artifacts that are identified only after data collection is complete. Earlier identification of these issues should make it easier to create high-quality training and evaluation data. We attempt this by evaluating protocols in which expert linguists work in the loop' during data collection to identify and address these issues by adjusting task instructions and incentives. Using natural language inference as a test case, we compare three data collection protocols: (i) a baseline protocol with no linguist involvement, (ii) a linguist-in-the-loop intervention with iteratively-updated constraints on the writing task, and (iii) an extension that adds direct interaction between linguists and crowdworkers via a chatroom. We find that linguist involvement does not lead to increased accuracy on out-of-domain test sets compared to baseline, and adding a chatroom has no effect on the data. Linguist involvement does, however, lead to more challenging evaluation data and higher accuracy on some challenge sets, demonstrating the benefits of integrating expert analysis during data collection.
المراجع المستخدمة
https://aclanthology.org/
كيف يمكننا تصميم أنظمة معالجة اللغة الطبيعية (NLP) التي تتعلم من ردود الفعل البشرية؟هناك هيئة بحثية متزايدة من أطر NLP البشرية (HITL) التي تدمج بشكل مستمر ردود الفعل الإنسانية لتحسين النموذج نفسه.Hitl NLP Research NLP NATCENT ولكن MultiriSious - حل م
تناقش ورقة الاستقصاء / المركبة هذه الطرق لتحسين تغطية الموارد مثل WordNet.RAPP تقدر الارتباطات، RHO، بين إحصائيات كوربوس ومعايير الهاجولية.RHO يحسن مع الكمية (حجم كوربوس) والجودة (التوازن).1M الكلمات تكفي لتقديرات بسيطة (ترددات غير منغرام)، ولكن 100x
نقدم دراسة شاملة للسبوريا المتاحة للحوار متعدد الأحزاب.نقوم بإجراء أكثر من 300 منشور مرتبط بالحوار المتعدد الأحزاب والكتالوج كافة شركة متاحة في التصنيف الجديد.نقوم بتحليل أساليب جمع البيانات لشركة حوار متعددة الأحزاب والحساب وتحديد العديد من المضادات
يعد Growdsourcing من غير الخبراء أحد أكثر الطرق شيوعا لجمع البيانات والشروح في NLP. على الرغم من أن هذه الأداة الأساسية في NLP، إلا أن استخدام الجماعة الجماعية يسترشد إلى حد كبير بالممارسات المشتركة والخبرة الشخصية للباحثين. يظل تطوير نظرية الاستخدام
تم انتقاد التمثيل اللغوي المستمدة من النص وحده بسبب نقص الأساس، أي ربط الكلمات مع معانيها في العالم المادي.عرضت نماذج الرؤية واللغة (VL)، التي تم تدريبها بالاشتراك على نص بيانات النص والصورة أو الفيديو كرددا على مثل هذه الانتقادات.ومع ذلك، في حين أظه