تحليل المدونات الصغيرة حيث ننشر ما نقوم بتمكيننا من أداء تطبيقات مختلفة مثل تحليل الاتجاه الاجتماعي وتوصية الكيان. لتتبع الاتجاهات الناشئة في مجموعة متنوعة من المجالات، نريد تصنيف المعلومات عن الكيانات الناشئة (على سبيل المثال، الصورة الرمزية 2) في منشورات المدونات الصغيرة وفقا لأنواعها (على سبيل المثال، فيلم). وبالتالي، فإننا نقدم مهمة جديدة للكتابة كيان تقوم بتعيين نوعا غرامة على كل كيان ناشئ عند إجراء انفجار من المشاركات التي تحتوي على هذا الكيان لأول مرة في المدونات الصغيرة. التحدي هو إجراء الكتابة من منشورات المدونات الصغيرة الصاخبة دون الاعتماد على المعرفة السابقة للكيان المستهدف. لمعالجة هذه المهمة، نبني مجموعات بيانات Twitter واسعة النطاق للغة الإنجليزية واليابانية باستخدام الإشراف البعيد الحساسة للوقت. ثم نقترح نموذج الكتابة العصبي المعياري الذي لا ينفدي فقط الكيان وسياقاته ولكن أيضا معلومات المعتوه في مشاركات متعددة. لكتابة الكيانات الناشئة "الكتاني" تعني لغة البرمجة الناشئة ولعبة الألواح الكلاسيكية)، والسياقات الكلاسيكية صاخبة، ونطير محدد سياق يجد سياقات ذات صلة للكيان الهدف. تؤكد التجارب على مجموعات البيانات Twitter فعالية نموذج الكتابة لدينا ومنح السياق.
Analyzing microblogs where we post what we experience enables us to perform various applications such as social-trend analysis and entity recommendation. To track emerging trends in a variety of areas, we want to categorize information on emerging entities (e.g., Avatar 2) in microblog posts according to their types (e.g., Film). We thus introduce a new entity typing task that assigns a fine-grained type to each emerging entity when a burst of posts containing that entity is first observed in a microblog. The challenge is to perform typing from noisy microblog posts without relying on prior knowledge of the target entity. To tackle this task, we build large-scale Twitter datasets for English and Japanese using time-sensitive distant supervision. We then propose a modular neural typing model that encodes not only the entity and its contexts but also meta information in multiple posts. To type homographic' emerging entities (e.g., Go' means an emerging programming language and a classic board game), which contexts are noisy, we devise a context selector that finds related contexts of the target entity. Experiments on the Twitter datasets confirm the effectiveness of our typing model and the context selector.
المراجع المستخدمة
https://aclanthology.org/
تستند نهج كتابة الكيانات التقليدية إلى نماذج تصنيف مستقلة، مما يجعلها من الصعب التعرف على أنواع الكيان المعتمدة والذات طويل الذيل والحبوب. في هذه الورقة، نجادل بأن التبعيات الخارجية والمترنوية المتطودة ضمنيا بين الملصقات يمكن أن توفر معرفة حاسمة لمعا
يعمل العمل الحالي على كتابة كيان غرامة (FET) عادة النماذج التلقائية على مجموعات البيانات التي تم الحصول عليها باستخدام قواعد المعرفة (KB) كشراف بعيد.ومع ذلك، فإن الاعتماد على KB يعني أنه يمكن إعاقة هذا الإعداد التدريبي من خلال عدم وجود أو عدم انتظام
غالبا ما يتطلب تدريب نماذج NLP كميات كبيرة من بيانات التدريب المسمى، مما يجعل من الصعب توسيع النماذج الحالية لغات جديدة.في حين تعتمد Transfer-Transfer عبر اللغات الصفرية على تضييق كلمة متعددة اللغات لتطبيق نموذج تدرب على لغة واحدة لآخر، فإن Yarowski
التغطية الواسعة التي تعني تعني التمثيلات في NLP التركيز في الغالب على المحتوى المعبر عنه صراحة. والأهم من ذلك أن ندرة مجموعات البيانات التلقائية للأدوار الضمنية المتنوعة يحد من الدراسات التجريبية في الدقوق اللغوي. على سبيل المثال، في مراجعة الويب خدم
على الرغم من أن نماذج التدريب المسبق قد حققت نجاحا كبيرا في توليد الحوار، إلا أن أدائها ينخفض بشكل كبير عندما يحتوي المدخلات على كيان لا يظهر في مجموعات بيانات ما قبل التدريب والضبط (كيان غير مرئي). لمعالجة هذه المشكلة، تستفيد الأساليب الحالية لقاع