تتمثل التعريف بإعادة الصياغة (PI)، وهي مهمة أساسية في معالجة اللغة الطبيعية، هي تحديد ما إذا كانت الجملتين تعبر عن نفس المعنى المماثل، وهي مشكلة تصنيف ثنائية. في الآونة الأخيرة، كانت النماذج اللغوية المدربة مسبقا بيرت هي خيارا شائعا لأطر نماذج PI المختلفة، ولكن جميع الطرق الحالية تقريبا تنظر في نص مجال عام. عندما يتم تطبيق هذه الأساليب على مجال معين، لا يمكن أن تكتب النماذج الحالية تنبؤات دقيقة بسبب نقص المعرفة المهنية. في ضوء هذا التحدي، نقترح إطارا جديدا، وهو، الذي يمكن أن يستفيد من المعرفة الخارجية غير المنظمة في ويكيبيديا لتحديد المواطن بدقة. نقترح علما مخلاصة المعرفة بالمفاهيم المتعلقة بحكمات معينة من ويكيبيديا عبر نموذج BM25. بعد استرداد المعرفة المخططة ذات الصلة، يجعل التنبؤات بناء على كل من المعلومات الدلالية للجملتين ومعرفة الخطوط العريضة. إضافة إلى ذلك، نقترح آلية Gating تجميع التنبؤ الدلالي القائم على المعلومات والتنبؤ القائم على المعرفة. تتم إجراء تجارب واسعة على مجموعة بيانات عامين: العرض (مجموعة بيانات مجال علوم الكمبيوتر) و Clinicalsts2019 (مجموعة بيانات مجال الطب الحيوي). تشير النتائج إلى أن الأساليب المتوفرة التي تتفوقت على أحدث الأحوال.
Paraphrase identification (PI), a fundamental task in natural language processing, is to identify whether two sentences express the same or similar meaning, which is a binary classification problem. Recently, BERT-like pre-trained language models have been a popular choice for the frameworks of various PI models, but almost all existing methods consider general domain text. When these approaches are applied to a specific domain, existing models cannot make accurate predictions due to the lack of professional knowledge. In light of this challenge, we propose a novel framework, namely , which can leverage the external unstructured Wikipedia knowledge to accurately identify paraphrases. We propose to mine outline knowledge of concepts related to given sentences from Wikipedia via BM25 model. After retrieving related outline knowledge, makes predictions based on both the semantic information of two sentences and the outline knowledge. Besides, we propose a gating mechanism to aggregate the semantic information-based prediction and the knowledge-based prediction. Extensive experiments are conducted on two public datasets: PARADE (a computer science domain dataset) and clinicalSTS2019 (a biomedical domain dataset). The results show that the proposed outperforms state-of-the-art methods.
المراجع المستخدمة
https://aclanthology.org/
تهدف توليد الصياغة الموجهة إلى Exemplar (EGPG) إلى توليد جملة مستهدفة تتوافق مع أسلوب Exemplar المحدد أثناء توسيع نطاق معلومات المحتوى من الجملة المصدر. في هذه الورقة، نقترح طريقة جديدة بهدف تعلم تمثيل أفضل للنمط والمحتوى. تحفز هذه الطريقة بشكل أساسي
في هذه الورقة، نحقق في مشكلة تعميم المجال (DG) للحصول على تحديد صياغة الإشراف (PI).نلاحظ أن أداء نماذج PI الحالية يتدهور بشكل كبير عند اختباره في مجال خارج التوزيع (OOD).نحن تخمين أنه ناجم عن التعلم الاختصار، أي هذه النماذج تميل إلى الاستفادة من الكل
إعادة صياغة إعادة صياغة مهمة مهمة في معالجة اللغة الطبيعية. تركز الأشغال السابقة على توليد إعادة صياغة مستوى الجملة، مع تجاهل توليد إعادة صياغة مستوى المستند، وهي مهمة أكثر تحديا وقيمة. في هذه الورقة، نستكشف مهمة إعادة صياغة نص عن طريق الوثيقة لأول م
تركز هذه الورقة على إعادة صياغة إعادة صياغة النص، وهي مهمة توليد اللغة الطبيعية المدروسة على نطاق واسع في NLP.مع تطور النماذج العصبية، أظهرت أبحاث توليد إعادة صياغة التحول التدريجي إلى الأساليب العصبية في السنوات الأخيرة.وقد قدم ذلك بهيئات تمثيل سياق
مشكلة طويلة الأمد مع إعادة صياغة إعادة صياغة هي الافتقار إلى إشارات الإشراف الموثوقة. في هذه الورقة، نقترح نموذجا جديدا غير منشئين من أجل إعادة صياغة إعادة صياغة إعادة صياغة نصها بناء على افتراض أن احتمالات توليد جملتين بنفس المعنى بالنظر إلى نفس الس