لتخفيف الجهود البشرية من الحصول على شروح واسعة النطاق، تهدف أساليب استخراج العلاقات شبه الإشراف إلى الاستفادة من البيانات غير المسبقة بالإضافة إلى التعلم من عينات محدودة. تعاني أساليب التدريب الذاتي الحالية من مشكلة الانجراف التدريجي، حيث يتم دمج تسميات زائفة صاخبة على البيانات غير المسبقة أثناء التدريب. لتخفيف الضوضاء في الملصقات الزائفة، نقترح طريقة تسمى METASRE، حيث تقوم شبكة توليد علامات العلاقة بإنشاء تقييم دقيق للجودة على التسميات الزائفة من خلال (META) التعلم من المحاولات الناجحة والفاشية على شبكة تصنيف العلاقة كهدف META إضافي. لتقليل تأثير الملصقات الزائفة الصاخبة، يعتمد METASRE مخطط استغلال ومستودعات زائفة تقيم جودة تسمية الزائفة على العينات غير المستمرة وتستغل فقط تسميات الزائفة عالية الجودة في أزياء التدريب الذاتي لزيادة العينات المصنفة بشكل تدريجي لكل من المتانة والدقة وبعد النتائج التجريبية على مجموعة بيانات عامة تثبت فعالية النهج المقترح.
To alleviate human efforts from obtaining large-scale annotations, Semi-Supervised Relation Extraction methods aim to leverage unlabeled data in addition to learning from limited samples. Existing self-training methods suffer from the gradual drift problem, where noisy pseudo labels on unlabeled data are incorporated during training. To alleviate the noise in pseudo labels, we propose a method called MetaSRE, where a Relation Label Generation Network generates accurate quality assessment on pseudo labels by (meta) learning from the successful and failed attempts on Relation Classification Network as an additional meta-objective. To reduce the influence of noisy pseudo labels, MetaSRE adopts a pseudo label selection and exploitation scheme which assesses pseudo label quality on unlabeled samples and only exploits high-quality pseudo labels in a self-training fashion to incrementally augment labeled samples for both robustness and accuracy. Experimental results on two public datasets demonstrate the effectiveness of the proposed approach.
المراجع المستخدمة
https://aclanthology.org/
النماذج الخاضعة للإشراف المستمرة تحظى بشعبية كبيرة بالنسبة لاستخراج العلاقة لأنه يمكننا الحصول على كمية كبيرة من البيانات التدريبية باستخدام طريقة الإشراف البعيدة دون شرح بشري.في الإشراف البعيد، تعتبر الجملة بمثابة مصدر Tuple إذا كانت الجملة تحتوي عل
لا يزال الاستحواذ على بيانات التدريب المتعدد اللغات يمثل تحديا في غزالة معنى الكلمة (WSD).لمعالجة هذه المشكلة، اقترحت النهج غير الخاضعة للكالة لإنشاء التعليقات التوضيحية بالمعنى تلقائيا لتدريب أنظمة WSD الخاضعة للإشراف.نقدم ثلاث طرق جديدة لإنشاء كورب
تتطلب شبكات العصبية العميقة الحديثة من بين الفن بيانات تدريبية ذات صلة واسعة النطاق غالبا ما تكون مكلفة للحصول على أو غير متوفرة للعديد من المهام. لقد ثبت أن الإشراف ضعيف في شكل قواعد خاصة بالمجال مفيدا في مثل هذه الإعدادات لإنشاء بيانات التدريب المس
لقد تم استخراج العلاقات عبر مجموعة نصية كبيرة غير مستمدة نسبيا في NLP، لكنه مهم للغاية بالنسبة لمجالات عالية القيمة مثل الطب الحيوي، حيث يكون الحصول على استدعاء عالية من أحدث النتائج أمر حاسم للتطبيقات العملية. بالمقارنة مع استخراج المعلومات التقليدي
تهدف استخراج العلاقات المفتوحة (Openre) إلى استخراج أنواع العلاقات الجديدة من Open-Domain Corpora، والذي يلعب دورا مهما في إكمال مخططات العلاقات لقواعد المعرفة (KBS). يلقي معظم طرق Openre بأنواع العلاقات المختلفة بمعزلات دون النظر في الاعتماد الهرمي.