توفر تبسيط الجملة المتوازي (SS) نادرة لأوصوامل SS العصبية. نقترح طريقة غير منشأة لبناء SS Corpora من Translation Translation ثنائي اللغة واسعة النطاق، مما يخفف من الحاجة إلى SS Corporged Corge. يتم تحفيز طريقتنا عن طريق النتائج التالية: يميل نموذج الترجمة الآلية العصبية عادة إلى توليد المزيد من الرموز عالية التردد وفرق مستويات التعقيد النصية موجودة بين المصدر واللغة المستهدفة ل Translation Corpus. من خلال أخذ زوج من المصدر الجمل من Corpus Translation وترجمات مراجعها في لغة الجسر، يمكننا إنشاء بيانات SS موازية زائفة واسعة النطاق. بعد ذلك، نبقي أزواج الجملة هذه مع اختلاف أعلى تعقيد كزواج من جملة SS. يمكن أن تلبي المبنى SS Corpora مع نهج غير مدفوع التوقعات بأن الأحكام المحاذاة تحافظ على نفس المعاني وأن يكون لها اختلاف في مستويات تعقيد النص. تظهر النتائج التجريبية أن أساليب SS التي تدربت بها كوربورا تحقق النتائج من أحدث النتائج وتفوق النتائج على نتائج اللغة الإنجليزية في Wikilarge.
The availability of parallel sentence simplification (SS) is scarce for neural SS modelings. We propose an unsupervised method to build SS corpora from large-scale bilingual translation corpora, alleviating the need for SS supervised corpora. Our method is motivated by the following two findings: neural machine translation model usually tends to generate more high-frequency tokens and the difference of text complexity levels exists between the source and target language of a translation corpus. By taking the pair of the source sentences of translation corpus and the translations of their references in a bridge language, we can construct large-scale pseudo parallel SS data. Then, we keep these sentence pairs with a higher complexity difference as SS sentence pairs. The building SS corpora with an unsupervised approach can satisfy the expectations that the aligned sentences preserve the same meanings and have difference in text complexity levels. Experimental results show that SS methods trained by our corpora achieve the state-of-the-art results and significantly outperform the results on English benchmark WikiLarge.
المراجع المستخدمة
https://aclanthology.org/
من المعروف أن الأساليب التاريخية تحتوي على أخطاء قدمتها أساليب OCR (التعرف على الأحرف البصرية) المستخدمة في عملية الرقمنة، غالبا ما يقال إنها مهينة أداء أنظمة NLP.تصحيح هذه الأخطاء يدويا هي عملية تستغرق وقتا طويلا، وقد تم الاعتماد على جزء كبير من الأ
تصف هذه الورقة Simplener، وهو نموذج تم تطويره لمهمة تبسيط الجملة في GEM-2021.نظامنا عبارة عن بنية محولات SEQ2SEQ أحادية مونولجة تستخدم الرموز المراقبة معلقة مسبقا إلى البيانات، مما يسمح للنموذج بتشكيل التبسيط الذي تم إنشاؤه وفقا للسمات التي تريدها ال
لبناء أنظمة التبسيط الآلي، وهي كورسا من الجمل المعقدة وإصداراتها المبسطة هي الخطوة الأولى لفهم تعقيد الجملة وتمكين تطوير أنظمة تبسيط النص التلقائي.نقدم مجموعة تبسيط الأردية المعجمية والمبسلة بموجبها بتحليل مفصل لعمليات التبسيط المختلفة والتقييم البشر
هناك نقص في شورا عالي الجودة للغات الجنوبية السلافية. مثل هذه الشركات مفيدة لعلماء الكمبيوتر والباحثين في العلوم الاجتماعية والعلوم الإنسانية على حد سواء، مع التركيز على العديد من تطبيقات اللغات والمحتوى وتطبيقات معالجة اللغة الطبيعية. تقدم هذه الورق
وصلت الترجمة غير المزدئة إلى أداء مثير للإعجاب على أزواج اللغة الغنية بالموارد مثل اللغة الإنجليزية الفرنسية والإنجليزية - الألمانية. ومع ذلك، أظهرت الدراسات المبكرة أنه في بيئات أكثر واقعية تنطوي على الموارد المنخفضة، لغات نادرة، تؤدي الترجمة غير ال