تصف هذه الورقة N-XKT (الترميز العصبي بناء على نقل المعرفة التوضيحية)، وهي طريقة جديدة للتحويل التلقائي للمعرفة التوضيحية من خلال آليات الترميز العصبي.نوضح أن N-XKT قادر على تحسين الدقة والتعميم بشأن الإجابة على سؤال العلوم (QA).على وجه التحديد، من خلال الاستفادة من الحقائق من معرض المعرفة التوضيحية الخلفية، يظهر نموذج N-XKT تحسنا واضحا على QA صفر النار.علاوة على ذلك، نظهر أن N-XKT يمكن ضبطها بشكل جيد على مجموعة بيانات QA المستهدفة، مما يتيح التقارب الأسرع والنتائج الأكثر دقة.يتم إجراء تحليل منهجي لتحليل أداء نموذج N-XKT وتأثير فئات مختلفة من المعرفة حول مهمة تعميم الشوط الصفرية.
This paper describes N-XKT (Neural encoding based on eXplanatory Knowledge Transfer), a novel method for the automatic transfer of explanatory knowledge through neural encoding mechanisms. We demonstrate that N-XKT is able to improve accuracy and generalization on science Question Answering (QA). Specifically, by leveraging facts from background explanatory knowledge corpora, the N-XKT model shows a clear improvement on zero-shot QA. Furthermore, we show that N-XKT can be fine-tuned on a target QA dataset, enabling faster convergence and more accurate results. A systematic analysis is conducted to quantitatively analyze the performance of the N-XKT model and the impact of different categories of knowledge on the zero-shot generalization task.
المراجع المستخدمة
https://aclanthology.org/
يهدف سؤال متعدد اللغات، الرد على الرسم البياني للمعرفة (KGQA) إلى استخلاص إجابات من الرسم البياني المعرفي (KG) للأسئلة بلغات متعددة. لتكون قابلة للتطبيق على نطاق واسع، نركز على إعداد نقل الطلقة الصفرية. هذا هو، يمكننا فقط الوصول إلى البيانات التدريبي
كان هناك تقدم كبير في مجال الإجابة على الأسئلة الاستخراجية (EQA) في السنوات الأخيرة.ومع ذلك، فإن معظمهم يعتمدون على التوضيحية الخاصة بالإجابة في الممرات المقابلة.في هذا العمل، نتعلم مشكلة EQA عندما لا توجد شروح موجودة للإجابة فترة الإجابة، أي، عندما
إلى جانب توفر مجموعات بيانات واسعة النطاق، مكنت هياكل التعلم العميق التقدم السريع في مهمة الإجابة على السؤال.ومع ذلك، فإن معظم مجموعات البيانات هذه باللغة الإنجليزية، وأدائيات النماذج متعددة اللغات الحديثة أقل بكثير عند تقييمها على البيانات غير الإنج
تم إثبات المشفرات المستندة إلى المحولات المسبدة مسبقا مثل بيرت لتحقيق الأداء الحديث في العديد من مهام NLP العديدة. على الرغم من نجاحهم، فإن ترميز نمط بيرت كبير الحجم ولديها زمن بيانات عالية أثناء الاستدلال (خاصة في آلات وحدة المعالجة المركزية) مما يج
معظم أساليب الإجابة على الأسئلة القائمة على المعرفة الحالية (KBQA) تعلم أولا تعيين السؤال المحدد في رسم بياني للاستعلام، ثم قم بتحويل الرسم البياني إلى استعلام قابل للتنفيذ للعثور على الإجابة.عادة ما يتم توسيع الرسم البياني للاستعلام تدريجيا من كيان