ترغب بنشر مسار تعليمي؟ اضغط هنا

lightseq: مكتبة الاستدلال عالية الأداء للمحولات

LightSeq: A High Performance Inference Library for Transformers

821   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

حقق محول ومتغيراتها نجاحا كبيرا في معالجة اللغة الطبيعية.نظرا لأن طرازات المحولات ضخمة الحجم، فإن خدمة هذه النماذج هي تحديا للتطبيقات الصناعية الحقيقية.في هذه الورقة، نقترح، مكتبة الاستدلال عالية الكفاءة للنماذج في عائلة المحولات.يتضمن سلسلة من تقنيات تحسين GPU لكلا من تبسيط حساب طبقات المحولات وتقليل بيانات الذاكرة.يدعم النماذج المدربة باستخدام Pytorch و Tensorflow.النتائج التجريبية على معايير الترجمة الآلية القياسية تظهر أنها تحقق تصل إلى 14x تسريع مقارنة مع Tensorflow وتسريع 1.4x مقارنة مع تنفيذ CUDA المتزامن.سيتم إصدار الرمز علنا بعد المراجعة.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

تصف الورقة توضيحات TENTRANS إلى المهمة المشتركة ل WMT 2021 المشتركة.نستكشف تدريب مجموعة متنوعة من نماذج محولات الصغار الأصغر باستخدام إعداد المعلمين - طالب.يتم تدريب نموذجنا من خلال منصة تدريب متعددة اللغات المتطورة ذاتية اللغات ذاتية اللغويةونحن نطل ق أيضا مجموعة أدوات الاستدلال عالية الأداء مفتوح المصدر لنماذج المحولات والمكتب في C ++ بالكامل.يتم بناء جميع التحسينات الإضافية على رأس محرك الاستدلال بما في ذلك التخزين المؤقت للانتباه، نواة الانصهار، والتوقف المبكر، والعديد من التحسينات الأخرى.في عمليات التقديمات الخاصة بنا، يمكن أن يترجم الأسرع النظام الأسرع أكثر من 22000 رموز في الثانية مع TESLA P4 واحدة مع الحفاظ على 38.36 بلو على EN-DE NEWSTEST2019.تتوفر نماذجنا المدربة ومزيد من التفاصيل في أمثلة المنافسة التي تخدمها Tentrans.
يقوم هذا البحث على دراسة اخر التطورات والاحداث في مجال الحوسبة عالية الأداء، والتي تقوم على توفير البنية التحتية والبيئة المناسبة والمستلزمات العتادية والبرمجية، مما يسمح بحل المسائل والرياضية والبيولوجية وتدريب نماذج الذكاء الاصطناعي والقيام بمحاكاة الظواهر الفيزيائية وغيرها من المسائل العملية الهامة التي تساهم بدفع عجلة التطور العملي بشكل مباشر
تعتمد معظم خوارزميات التوقيع الرقمي الحالية في بنيتها على مفاهيم رياضية معقدة يتطلب تنفيذها وقتاً طويلاً و جيداً حسابياً كبيرا. و كمحاولة للتخفيف من هذه المشاكل اقترح بعض الباحثون خوارزميات توقيع رقمي تعتمد على توابع و عمليات حسابية بسيطة سريعة التنفيذ، إلا أن ذلك كان على حساب الأمان.
نقوم بتطوير نهج رواية للاستدلال بثقة في المحولات متعددة الطبقات الكبيرة والمكلفة الآن في كل مكان في معالجة اللغة الطبيعية (NLP).تؤدي الأساليب الحسابية المطفأة أو التقريبية إلى زيادة الكفاءة، ولكن يمكن أن تأتي مع تكاليف أداء غير متوقعة.في هذا العمل، ن قدم القطط - محولات تكيفية واثقة - حيث نزيد في وقت واحد من الكفاءة الحسابية، مع ضمان درجة تحديد الحاسمة مع النموذج الأصلي بثقة عالية.تقوم طريقةنا بتدريب رؤوس التنبؤ الإضافية على رأس الطبقات الوسيطة، وتقريرها بشكل حيوي عند إيقاف تخصيص الجهود الحسابية لكل إدخال باستخدام مصنف تناسق التعريف.لمعايرة التوقعات المبكرة لدينا الحكم، نقوم بصياغة امتداد فريد من التنبؤ المطابق.نوضح فعالية هذا النهج في أربعة مهام التصنيف والانحدار.
نماذج المحولات هي التقليب equivariant.لتزويد الطلب واكتب معلومات الرموز المميزة والإدخال، عادة ما تتم إضافتها إلى المدخلات.تعمل الأعمال الأخيرة الاختلافات المقترحة من الترميزات الموضعية مع ترميزات الموضع النسبي تحقيق أداء أفضل.يوضح تحليلنا أن المكسب يأتي في الواقع من نقل المعلومات الموضعية إلى طبقة الاهتمام من المدخلات.بدافع من ذلك، نقدم اهتماما ممتما مطردا للمحولات (النظام الغذائي)، وهي آلية بسيطة ولكنها فعالة لتشفير معلومات الموقف والقطاع في نماذج المحولات.تتمتع الطريقة المقترحة بتدريب ووقت الاستدلال بشكل أسرع، مع تحقيق أداء تنافسي في معايير الغراء وإكستريم و WMT.نحن نعتبر أكثر تعميم طريقتنا للمحولات الطويلة المدى وإظهار مكاسب الأداء.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا