تقدم هذه الدراسة وتحليلات WikitalkEdit وديجمات من المحادثات وتعديل التواريخ من ويكيبيديا، للبحث في التعاون عبر الإنترنت ونمذجة المحادثة. تضم DataSet ثلاث مرات حوار من صفحات الحديث Wikipedia، وتحرير الإجراءات على المقالات المقابلة التي تتم مناقشتها. نظرا لكيفية دعم البيانات الفهم الكلاسيكي للمطابقة النمط، حيث تتوقع العاطفة الإيجابية واستخدام الضمائر ذات الشخص الأول تغييرا عاطفيا إيجابي في مساهم ويكيبيديا. ومع ذلك، فإنهم لا يتوقعون سلوك التحرير. من ناحية أخرى، فإن ردود الفعل التي تم استدعاء الوكلاء والنقد، والمراجع إلى قواعد المجتمع في ويكيبيديا، من المرجح أن تقنع المساهم في أداء التعديلات ولكنها أقل عرضة للتأدي إلى مشاعر إيجابية. لقد قمنا بتطوير مصنفات أساسية مدربة على ميزات روبرتا مدربة مسبقا والتي يمكن أن تتنبأ بالتغيير التحريري بدرجة F1 من .54، بالمقارنة مع درجة F1 من .66 للتنبؤ بالتغيير العاطفي. كما يتم توفير تحليل تشخيصي للأخطاء الاستمرارية. نستنتج مع التطبيقات والتوصيات المحتملة للعمل في المستقبل. تتوفر DataSet علنا لمجتمع البحث في https://github.com/kj2013/wikitalkedit/.
This study introduces and analyzes WikiTalkEdit, a dataset of conversations and edit histories from Wikipedia, for research in online cooperation and conversation modeling. The dataset comprises dialog triplets from the Wikipedia Talk pages, and editing actions on the corresponding articles being discussed. We show how the data supports the classic understanding of style matching, where positive emotion and the use of first-person pronouns predict a positive emotional change in a Wikipedia contributor. However, they do not predict editorial behavior. On the other hand, feedback invoking evidentiality and criticism, and references to Wikipedia's community norms, is more likely to persuade the contributor to perform edits but is less likely to lead to a positive emotion. We developed baseline classifiers trained on pre-trained RoBERTa features that can predict editorial change with an F1 score of .54, as compared to an F1 score of .66 for predicting emotional change. A diagnostic analysis of persisting errors is also provided. We conclude with possible applications and recommendations for future work. The dataset is publicly available for the research community at https://github.com/kj2013/WikiTalkEdit/.
المراجع المستخدمة
https://aclanthology.org/
التلخصات المتبقية هي مهمة صعبة لا توجد موارد علمية عبر اللغات المتاحة حاليا. للتغلب على عدم وجود مورد عالي الجودة، نقدم مجموعة بيانات جديدة لتلخيص أحادي اللغة وتبادر بالنظر إلى الزوج الإنجليزي الألماني. نقوم بجمع بيانات عالية الجودة العالية والعالمية
تتطلب العديد من التطبيقات توليد ملخصات مصممة خصيصا لاحتياجات معلومات المستخدم، أي نواياها. الأساليب التي تعبر عن النية عبر استعلامات المستخدم الصريحة تسقط قصيرة عند التفسير الاستعلام هو شخصي. توجد عدة مجموعات من مجموعات البيانات للتخصيص مع النوايا ال
يستخدم الأشخاص من المنتديات عبر الإنترنت إما أن نبحث عن معلومات أو للمساهمة به. بسبب شعبيتها المتنامية، تم إنشاء بعض المنتديات عبر الإنترنت خصيصا لتوفير الدعم والمساعدة والآراء للأشخاص الذين يعانون من مرض عقلي. الاكتئاب هو واحد من الأمراض النفسية الأ
هناك نقص في شورا عالي الجودة للغات الجنوبية السلافية. مثل هذه الشركات مفيدة لعلماء الكمبيوتر والباحثين في العلوم الاجتماعية والعلوم الإنسانية على حد سواء، مع التركيز على العديد من تطبيقات اللغات والمحتوى وتطبيقات معالجة اللغة الطبيعية. تقدم هذه الورق
دقة Aqueference Coreference Coreence هي مهمة مؤسسية لتطبيقات NLP التي تنطوي على معالجة النص المتعدد. ومع ذلك، فإن شركة كوربيا الحالية لهذه المهمة نادرة وصغيرة نسبيا، بينما تعلق فقط مجموعات من المستندات المتواضعة فقط من الوثائق التي تنتمي إلى نفس المو