ترغب بنشر مسار تعليمي؟ اضغط هنا

نحو تفسير وتخفيف سلوك التعلم الاختصار من نماذج NLU

Towards Interpreting and Mitigating Shortcut Learning Behavior of NLU models

655   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

تشير الدراسات الحديثة إلى أن نماذج NLU عرضة للإعتماد على ميزات الاختصار للتنبؤ، دون تحقيق فهم اللغة الحقيقية. نتيجة لذلك، تفشل هذه النماذج في التعميم إلى بيانات الواقع الحقيقي خارج التوزيع. في هذا العمل، نظهر أن الكلمات الموجودة في مجموعة تدريب NLU يمكن أن تكون على غرارها كتوزيع طويل الذيل. هناك نتائج توصلتان: 1) نماذج NLU لها تفضيل قوي للميزات الموجودة في رأس التوزيع الطويل الذيل، و 2) يتم التقاط ميزات الاختصار خلال التكرارات القليلة المبكرة للغاية للتدريب النموذجي. يتم استخدام هاتين الملاحمينين أيضا لصياغة قياس يمكن تحديد درجة الاختصار من كل عينة تدريبية. استنادا إلى قياس الاختصار هذا، نقترح وضع إطار تخفيف الاختصار LGTR، لقمع النموذج من إصدار تنبؤات مكثفة للعينات مع درجة اختصار كبيرة. النتائج التجريبية على ثلاثة معايير NLU توضح أن شرح التوزيع طويل الذيل يعكس بدقة سلوك التعلم الاختصار لنماذج NLU. يشير التحليل التجريبي كذلك إلى أن LGTR يمكن أن يحسن دقة التعميم على بيانات OOD، مع الحفاظ على الدقة على بيانات التوزيع.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

في هذه الورقة، نحقق في مشكلة تعميم المجال (DG) للحصول على تحديد صياغة الإشراف (PI).نلاحظ أن أداء نماذج PI الحالية يتدهور بشكل كبير عند اختباره في مجال خارج التوزيع (OOD).نحن تخمين أنه ناجم عن التعلم الاختصار، أي هذه النماذج تميل إلى الاستفادة من الكل مات الإعلانية الفريدة لمجموعة بيانات أو مجال معين.لتخفيف هذه المشكلة وتعزيز قدرة DG، نقترح إطار PI بناء على النقل الأمثل (OT).تجبر طريقةنا على الشبكة لتعلم الميزات اللازمة لجميع الكلمات في الإدخال، مما يخفف من مشكلة التعلم الاختصار.تظهر النتائج التجريبية أن طريقتنا تعمل على تحسين قدرة DG على نماذج PI.
تتيح المعالجة الإضافية أنظمة تفاعلية تستجيب بناء على المدخلات الجزئية، وهي خاصية مرغوبة على سبيل المثال في عوامل الحوار. تقوم بنية المحولات الشعبية حاليا بطبيعتها بمعالجة التسلسلات ككل، تجرد فكرة الوقت. محاولات العمل الحديثة لتطبيق المحولات بشكل تدري جي عن طريق إعادة التشغيل - تدريجيا من خلال التغذية بشكل متكرر، إلى نموذج غير متقلب، بادئات إدخال أطول بشكل متزايد لإنتاج مخرجات جزئية. ومع ذلك، فإن هذا النهج مكلف بشكل حسابي ولا يتجادل بكفاءة للتسلسل الطويل. بالتوازي، نشهد جهود لجعل المحولات أكثر كفاءة، على سبيل المثال المحول الخطي (LT) مع آلية تكرار. في هذا العمل، ندرس جدوى LT ل NLU تدريجي باللغة الإنجليزية. تبين نتائجنا أن نموذج LT المتكرر لديه أفضل أداء تدريجي وسرعة الاستدلال أسرع مقارنة بالمحول القياسي واللفنت مع إعادة التشغيل التدريجي، بتكلفة جزء من جودة غير متزايدة (التسلسل الكامل). نظرا لأن إسقاط الأداء يمكن تخفيفه عن طريق تدريب النموذج لانتظار السياق الصحيح قبل الالتزام بإخراج وأن التدريب بادئة الإدخال مفيد لتقديم المخرجات الجزئية الصحيحة.
تعتمد نماذج التعلم العميق الحديثة لمعالجة اللغة الطبيعية بشكل كبير على كميات كبيرة من النصوص المشروح.ومع ذلك، قد يكون الحصول على مثل هذه النصوص صعبة عندما تحتوي على معلومات شخصية أو سرية، على سبيل المثال، في المجالات الصحية أو القانونية.في هذا العمل، نقترح طريقة لإلغاء تحديد المستندات النصية النموذج الحرة من خلال تقسيم البيانات الحساسة بعناية فيها.نظهر أن طريقتنا تحافظ على الأداة المساعدة للبيانات لتصنيف النصوص ووضع التسلسل والتسجيل الإجابة على المهام.
نقوم بتحليل ما إذا كانت نماذج اللغة الكبيرة قادرة على التنبؤ بأنماط سلوك القراءة البشرية.قارنا أداء نماذج محولات محول خاصة باللغات ومتعددة اللغات للتنبؤ بتدابير وقت القراءة التي تعكس معالجة الجملة البشرية الطبيعية على النصوص الهولندية والإنجليزية وال ألمانية والروسية.ينتج عن هذا نماذج دقيقة من سلوك القراءة البشرية، والذي يشير إلى أن نماذج المحولات ترميز ضمنيا أهمية نسبية في اللغة بطريقة مماثلة لآليات المعالجة البشرية.نجد أن نماذج بيرت و XLM تتنبأ بنجاح مجموعة من ميزات تتبع العين.في سلسلة من التجارب، نحلل القدرات عبر المجال واللغات الشاملة لهذه النماذج وإظهار كيف تعكس معالجة الجملة البشرية.
مكنت نماذج اللغة العصبية العميقة مثل بيرت التطورات الأخيرة في العديد من مهام معالجة اللغة الطبيعية. ومع ذلك، نظرا للجهد والتكلفة الحاسوبية المشاركة في التدريب المسبق لها، يتم إدخال هذه النماذج عادة فقط لعدد صغير من لغات الموارد عالية الوزن مثل اللغة الإنجليزية. في حين تتوفر نماذج متعددة اللغات التي تغطي أعدادا كبيرة من اللغات، فإن العمل الحديث يشير إلى أن التدريب أحادي الأحادي يمكن أن ينتج عن نماذج أفضل، وفهمنا للمفاضرة بين التدريب الأحادي وغير اللغوي غير مكتمل. في هذه الورقة، نقدم خط أنابيب بسيطة وأتمتة بالكامل لإنشاء نماذج بيرت الخاصة باللغة من البيانات من بيانات ويكيبيديا وإدخال 42 من هذه النماذج الجديدة، والأكثر من اللازم لغات حتى الآن تفتقر إلى نماذج اللغة العصبية العميقة المخصصة. نقوم بتقييم مزايا هذه النماذج باستخدام اختبارات Cloze و Autify Parser على بيانات التبعيات العالمية، والأداء المتناقض مع النتائج باستخدام طراز Bert (Mbert) متعدد اللغات. نجد أن نماذج WikiBert المقدمة حديثا تفوقت Mbert في اختبارات Cloze لجميع اللغات تقريبا، وأن uDify باستخدام نماذج Wikibert تفوق المحلل باستخدام Mbert في المتوسط، مع توضح الطرز الخاصة باللغة تحسين أداء محسنة بشكل كبير لبعض اللغات، ولكن تحسين محدود أو تحسين انخفاض في الأداء للآخرين. تتوفر جميع الطرق والنماذج المقدمة في هذا العمل تحت التراخيص المفتوحة من https://github.com/turkunlp/wikibert.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا