مزيج من التمثيلات المتعددة اللغات المدربة مسبقا وتعلم النقل عبر اللغات هو أحد أكثر الطرق فعالية لبناء أنظمة NLP الوظيفية لغات الموارد المنخفضة. ومع ذلك، بالنسبة لغات الموارد المنخفضة للغاية دون نطاق واسع النطاق لأحادية النطاق للتدريب المسبق أو البيانات المشروحة المكافحة للضبط بشكل جيد، لا يزال التعلم التحويل مهمة مفهومة وصعبة. علاوة على ذلك، يوضح العمل الحديث أن تمثيلات متعددة اللغات هي بفك الشفقة على اللغات، مما جلب تحديات إضافية للتحويل إلى لغات الموارد المنخفضة للغاية. في هذه الورقة، نقترح metaxl، إطار التعلم التعلم التعلم الذي يتعلم تحويل التمثيلات بحكمة من اللغات المساعدة إلى هدف واحد ويجلب مساحات تمثيلها أقرب إلى النقل الفعال. تجارب مكثفة على لغات الموارد المنخفضة في العالم الحقيقي - دون الوصول إلى كورسا أحادية واسعة النطاق أو كميات كبيرة من البيانات المسمى - للمهام مثل تحليل المشاعر المتبادلة والاعتراف كيان المسمى إظهار فعالية نهجنا. رمز Metaxl متوفر علنا في github.com/microsoft/metaxl.
The combination of multilingual pre-trained representations and cross-lingual transfer learning is one of the most effective methods for building functional NLP systems for low-resource languages. However, for extremely low-resource languages without large-scale monolingual corpora for pre-training or sufficient annotated data for fine-tuning, transfer learning remains an understudied and challenging task. Moreover, recent work shows that multilingual representations are surprisingly disjoint across languages, bringing additional challenges for transfer onto extremely low-resource languages. In this paper, we propose MetaXL, a meta-learning based framework that learns to transform representations judiciously from auxiliary languages to a target one and brings their representation spaces closer for effective transfer. Extensive experiments on real-world low-resource languages -- without access to large-scale monolingual corpora or large amounts of labeled data -- for tasks like cross-lingual sentiment analysis and named entity recognition show the effectiveness of our approach. Code for MetaXL is publicly available at github.com/microsoft/MetaXL.
المراجع المستخدمة
https://aclanthology.org/
حقق التعلم التلوي نجاحا كبيرا في الاستفادة من المعرفة المستفادة التاريخية لتسهيل عملية التعلم المهمة الجديدة.ومع ذلك، فإن تعلم معرفة المهام التاريخية، التي اعتمدتها خوارزميات التعلم التلوي الحالية، قد لا تعميم بشكل جيد للاختبار المهام عندما لا تكون م
تستكشف هذه الورقة تأثير استخدام التعلم المتعدد التواجد لتلخيص الجماع في سياق كورسا التدريب الصغيرة.على وجه الخصوص، نحن ندمج أربع مهام مختلفة (تلخيص استخراجي، ونمذجة اللغة، والكشف عن المفهوم، والكشف عن الصياغة على حد سواء بشكل فردي ومزيج، بهدف تعزيز ا
نقترح طريقة لتقطير معنى المعنى اللاإرادي للغات من تشفير الجملة متعددة اللغات.عن طريق إزالة المعلومات الخاصة باللغة من التضمين الأصلي، نسترجع التضمين الذي يمثله بشكل كامل معنى الجملة.تعتمد الطريقة المقترحة فقط على Corpora الموازي دون أي شروح بشرية.يتي
أصبح توحيد التعلم الصوتي واللغوي أمرا مهما بشكل متزايد بنقل المعرفة المستفادة بشأن وفرة بيانات لغة الموارد عالية الموارد للحصول على التعرف على الكلام المنخفض الموارد. الأساليب الحالية ببساطة تتالي النماذج الصوتية واللغة المدربة مسبقا لتعلم النقل من ا
نقترح نهجا جديدا لتعلم تضمين الكلمات المتبادلة عبر السياق بناء على كائن مواز صغير (E.G. بضع مئات من أزواج الجملة). تتمتع طريقتنا بدمج الكلمات عبر نموذج فك تشفير LSTM يترجم في وقت واحد وإعادة بناء جملة مدخلات. من خلال تقاسم المعلمات النموذجية بين لغات