يقدم البشر ردود مناسبة لا يستند فقط إلى كلام الحوار السابق ولكن أيضا على المعرفة الخلفية الضمنية مثل الحس السليم. على الرغم من أن نماذج توليد الاستجابة العصبية تنتج ردود تشبه الإنسان، إلا أنها في الغالب من طرفا ولا تولد أسباب وسيطة بين تاريخ الحوار والردود. يهدف هذا العمل إلى الدراسة إذا وكيف يمكننا تدريب نموذج RG الذي يتحدث عن نفسه لتوليد معرفة ضمنية قبل تقديم ردود. نحن نحقق مزيد من التحقيق في هذه النماذج عندما تولد معرفة خلفية ضمنية وعندما لا يكون ذلك ضروريا. تظهر النتائج التجريبية مقارنة بالنماذج التي تولد الردود مباشرة بالنظر إلى تاريخ الحوار، وتنتج نماذج الحديث الذاتي استجابات أفضل بجودة وفقا للتقييم البشري على الحكم النحوي والتماسك والعمل. والنماذج التي يتم تدريبها على تحديد متى يتحدث التحدث الذاتي إلى تحسين جودة الاستجابة. تبين تحليل المعرفة الضمنية الناتجة أن الطرز تستخدم معظمها المعرفة بشكل مناسب في الردود.
Humans make appropriate responses not only based on previous dialogue utterances but also on implicit background knowledge such as common sense. Although neural response generation models seem to produce human-like responses, they are mostly end-to-end and not generating intermediate grounds between a dialogue history and responses. This work aims to study if and how we can train an RG model that talks with itself to generate implicit knowledge before making responses. We further investigate can such models identify when to generate implicit background knowledge and when it is not necessary. Experimental results show that compared with models that directly generate responses given a dialogue history, self-talk models produce better-quality responses according to human evaluation on grammaticality, coherence, and engagingness. And models that are trained to identify when to self-talk further improves the response quality. Analysis on generated implicit knowledge shows that models mostly use the knowledge appropriately in the responses.
المراجع المستخدمة
https://aclanthology.org/
تقييم جودة الردود الناتجة عن أنظمة محادثة المجال المفتوحة هي مهمة صعبة. هذا جزئيا لأنه يمكن أن يكون هناك العديد من الردود المناسبة لتاريخ حوار معين. غالبا ما تفشل المقاييس المرجعية التي تعتمد على مقارنات إلى مجموعة من الاستجابات الصحيحة المعروفة في ح
يمكن تصنيف الأجهزة المحمولة، التي تلخص تماما المواضيع الرفيعة المستوى التي تمت مناقشتها في وثيقة، في عبارة البصرة الحالية التي تظهر صراحة في النص المصدر والفتحية الغائبة التي لا تتطابق مع أي لاحق متجاور ولكنه مرتبط للغاية بالمصدر. معظم نهج توليد مفات
يعد توليد الاستجابة الشخصية ضروريا لمزيد من المحادثات التي يشبها الإنسان. ومع ذلك، وكيفية نموذج معلومات تخصيص المستخدم مع عدم وجود أوصاف شخص مستخدم صريح أو التركيبة السكانية لا يزال قيد التحقيق فيها. لمعالجة مشكلة بيانات Sparsity للبيانات والعدد الها
بدافع من جيل السؤال المقترح في أنظمة توصية أخبار المحادلات، نقترح نموذجا لتوليد أزواج الإجابات السؤال (أزواج ضمان الجودة) مع أسئلة ذاتية التركيز ذاتي ومقيد الطول، إجابات تلخص المادة.نبدأ بجمع مجموعة بيانات جديدة من المقالات الإخبارية مع أسئلة كعناوين
نقترح معالجة مهام توليد البيانات إلى النص عن طريق الربط مباشرة من جانب شرائح النص من الأزواج المستهدفة من الجيران.على عكس العمل الحديث الذي تقوم بالشروط على الجيران المسترجع ولكن يولد رمزا نصي نصي، من اليسار إلى اليمين، نتعلم السياسة التي تتعامل مباش