تصف هذه الورقة النموذج الفائز في المهمة المشتركة باللغة العربية NLP4IF لمحاربة المعكرية CovID-19.الهدف من المهمة المشتركة هو التحقق من التضليل حول Covid-19 في تغريدات عربية.تم تصنيف نموذجنا المقترح الأول مع درجة F1 من 0.780 ونتيجة دقة من 0.762.تم تجربة مجموعة متنوعة من النماذج اللغوية المدربة المستندة إلى المحولات من خلال هذه الدراسة.يعد النموذج الأفضل سجل فرقة من نماذج عربيرت والقاعدة في عربيه، وأربرت.تتمثل إحدى النتائج الرئيسية في الدراسة في إظهار التأثير يمكن أن يكون للمعالجة المسبقة في درجة كل نموذج.بالإضافة إلى وصف النموذج الفائز، تظهر الدراسة الحالية تحليل الأخطاء.
This paper describes the winning model in the Arabic NLP4IF shared task for fighting the COVID-19 infodemic. The goal of the shared task is to check disinformation about COVID-19 in Arabic tweets. Our proposed model has been ranked 1st with an F1-Score of 0.780 and an Accuracy score of 0.762. A variety of transformer-based pre-trained language models have been experimented with through this study. The best-scored model is an ensemble of AraBERT-Base, Asafya-BERT, and ARBERT models. One of the study's key findings is showing the effect the pre-processing can have on every model's score. In addition to describing the winning model, the current study shows the error analysis.
المراجع المستخدمة
https://aclanthology.org/
توفر هذه الورقة نظرة عامة مفصلة للنظام ونتائجها، والتي تم إنتاجها كجزء من المهمة المشتركة NLP4IF بشأن مكافحة المعكرات المعاكسة 19 في Naacl 2021. هذه المهمة تم إنجازها باستخدام مجموعة متنوعة من التقنيات.استخدمنا نماذج التمثيل النصية الحديثة للسياق الت
نقدم النتائج والنتائج الرئيسية للمهام المشتركة NLP4IF-2021. تركز المهمة 1 على محاربة المعكرات المعاكسة 19 في وسائل التواصل الاجتماعي، وتم عرضها باللغة العربية والكبلانية والإنجليزية. بالنظر إلى تغريدة، طلبت التنبؤ بما إذا كانت هذه التغريدات تحتوي على
وقد رافق انتشار Covid-19 بمعلومات مفاجئة واسعة النطاق بشأن وسائل التواصل الاجتماعي.على وجه الخصوص، شهد Twittercrive زيادة كبيرة في نشر الحقائق والأرقام المشوهة.يهدف هذا العمل الحالي إلى تحديد تغريدات بشأن CovID-19 التي تحتوي على معلومات ضارة وخاطئة.ل
أصبح الانتشار الهائل للمعلومات الخاطئة عن وسائل التواصل الاجتماعي مخاطر عالمية خاصة في وضع جائحة عالمي مثل Covid-19. وبالتالي أصبح الكشف عن المعلومات الخاطئة موضوعا للأبحاث في الأشهر الأخيرة. في السنوات الأخيرة، تم استخدام نماذج تعلم الآلات الخاضعة ل
في هذه الورقة، نصف نظامنا للمهمة المشتركة بشأن مكافحة المعكرية CovID-19 باللغة الإنجليزية.تتألف الهندسة المعمارية المقترحة من نموذج تصنيف متعدد الناتج للمهام السبعة، مع طبقة اهتمام مهام متعددة المهام المتعددة الرأس لمجموع المعلومات المشتركة بين المها