ترغب بنشر مسار تعليمي؟ اضغط هنا

مناقشة تغير المناخ ومعالجة اللغات الطبيعية

The Climate Change Debate and Natural Language Processing

376   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

النقاش حول تغير المناخ (CC) - - مدى أسبابه، والاستجابات اللازمة - - مكثفة وعدم أهمية عالمية. ومع ذلك، في مجتمع معالجة اللغة الطبيعي (NLP)، استقبل هذا المجال حتى الآن الكثير من الاهتمام. على النقيض من ذلك، فهي بارزة هائلة في مختلف التخصصات العلوم الاجتماعية، وبعض هذا العمل يتبع نموذج "نص البيانات"، والسعي إلى استخدام الأساليب الكمية لتحليل كميات كبيرة من النص المرتبط بمكبر الصوت. البحث الآخر هو نوعية في الطبيعة والدراسات تفاصيل، الفروق الدقيقة والجهات الفاعلة والدوافع داخل خطابات CC. من الناحية القادمة من كل من NLP والعلوم السياسية، ومراجعة الأعمال الرئيسية في كلا التخصصات، نناقش كيف يمكن لنقل العلوم الاجتماعية لمناقشات CC تقديم التقدم في التعدين / NLP، وكيفية، في المقابل، يمكن ل NLP دعم صانعي السياسات والناشطين في من الفائدة من خطابات CC واسعة النطاق ومعقدة عبر الأنواع المختلفة والقنوات والموضوعات والمجتمعات. هذا أمر بالغ الأهمية لقدرته على جعل تأثير سريع وذات مغزى على الخطاب، وتشكيل تغيير السياسة اللازمة.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

3733 - MIT press 1999 كتاب
أصبحت الأساليب الإحصائية لمعالجة اللغات الطبيعية مهيمنة في السنوات الأخيرة. يوفر هذا الكتاب تغطية واسعة وعميقة للأسس الرياضية واللغوية لهذه الطرائق، بالإضافة إلى ذلك, يزوّد الكتاب شرح مفصل للأساليب الإحصائية ، مما يسمح للطلاب والباحثين ببناء تطبيقاتهم الخاصة.
تقنيات التحييد، على سبيل المثالإن رفض المسؤولية والحرمان من الضحية، يتم استخدامه في سرد شكوك تغير المناخ لتبرير عدم العمل أو تعزيز وجهة نظر بديلة.نسترحب أولا بالعلوم الاجتماعية لإدخال المشكلة في مجتمع NLP، وتقديم حبيبتي مخطط الترميز، ثم جمع التعليقات التوضيحية اليدوية من التقنيات المحايدة في النص فيما يتعلق بتغير المناخ، وتجربة النماذج القائمة على برت تحت إشراف وشبه الإشرافوبعد
تعد أنظمة معالجة اللغة الطبيعية (NLP) في قلب العديد من أنظمة صنع القرار الآلي الحرجة التي تجعل توصيات حاسمة حول عالمنا في المستقبل.تم دراسة التحيز بين الجنسين في NLP جيدا باللغة الإنجليزية، لكنها كانت أقل دراستها بلغات أخرى.في هذه الورقة، تضم فريقا ب ينهم متحدثون 9 لغات - الصينية والإسبانية والإنجليزية والعربية والألمانية والفرنسية والفرصي والأوردو وولف - تقارير وتحليل قياسات التحيز بين الجنسين في ولاية ويكيبيديا كورسيا لهذه اللغات 9 لغات 9 لغات 9 لغات 9 لغات 9 لغات هذه.نقوم بتطوير ملحقات لحسابات متر راي حساسية على مستوى المهنة والجنس على مستوى كوربوس المصممة في الأصل للغة الإنجليزية وتطبيقها على 8 لغات أخرى، بما في ذلك اللغات التي لديها أسماء جنسانية من النوع الاجتماعي بما في ذلك كلمات المهنة الأنثوية والمذكر والمحايدة المختلفة.نناقش العمل في المستقبل من شأنه أن يستفيد بشكل كبير من منظور اللغويات الحاسوبية.
تجمع أبحاث معالجة اللغة الطبيعية (NLP) بين دراسة المبادئ العالمية، من خلال العلوم الأساسية، مع استهداف العلوم التطبيقية في حالات الاستخدام وإعدادات محددة. ومع ذلك، غالبا ما يفترض عملية التبادل بين NLP والتطبيقات الأساسية في كثير من الأحيان الظهور بشك ل طبيعي، مما أدى إلى العديد من الابتكارات التي تسير دون مبرر والعديد من الأسئلة المهمة تركت غير مستعصة. نحن نصف نموذج جديد من Translationations NLP، الذي يهدف إلى بنية وتيسير العمليات التي تبلغ بها بحث NLP الأساسي والتطبيقي بعضها البعض. وبالتالي يعرض NLP نموذجا للبحث الثالث، ركز على فهم التحديات التي تطرحها احتياجات التطبيق وكيف يمكن أن تدفع هذه التحديات الابتكار في تصميم العلوم والتكنولوجيا الأساسية. نظرا لأن العديد من التطورات المهمة في أبحاث NLP قد برزت من تقاطع المبادئ الأساسية مع احتياجات الطلب، وتقديم إطار مفاهيمي يحدد أصحاب المصلحة والأسئلة الرئيسية في البحوث المتعلقة بالجمالية. يوفر إطار عملنا خريطة طريق لتطوير Translationations NLP كجال بحث مخصص، وتحدد المبادئ التعليمية العامة لتسهيل التبادل بين البحوث الأساسية والتطبيقية.
تستكشف هذه المقالة إمكانية معالجة اللغات الطبيعية (NLP) لتمكين نموذج شرطة مركزة وأقل فعالية وأقل من المواجهة التي كانت تستهلك حتى الآن من الموارد لتنفيذ الحجم. الشرطة المنحى للمشاكل (البوب) هي استبدال محتمل، على الأقل جزئيا، بالنسبة للشرطة التقليدية التي تعتمد نهجا تفاعلا، تعتمد اعتمادا كبيرا على نظام العدالة الجنائية. على النقيض من ذلك، يسعى البوب ​​لمنع الجريمة من خلال التلاعب بالظروف الأساسية التي تسمح بالارتكاب الجرائم. يتطلب تحديد هذه الشروط الأساسية فهما مفصلا لأحداث الجريمة - معرفة ضمنية تعقد غالبا من قبل ضباط الشرطة ولكن يمكن أن تكون صعبة للغاية للاستمتاع ببيانات الشرطة المهيكلة. يوجد أحد المصدر المحتمل للنصية في بيانات نصية مجانية غير منظمة تجمعها الشرطة لأغراض التحقيق أو الإدارة. ومع ذلك، فإن وكالات الشرطة لا تحتوي عادة على المهارات أو الموارد لتحليل هذه البيانات على نطاق واسع. في هذه المقالة، نقول أن NLP يقدم القدرة على فتح هذه البيانات غير المنظمة وبالتالي السماح للشرطة بتنفيذ المزيد من مبادرات البوب. ومع ذلك، نحذر أن استخدام نماذج NLP دون معرفة كافية قد يسمح إما بإدخال التحيز داخل البيانات التي تؤدي إلى نتائج غير مواتية.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا