ترغب بنشر مسار تعليمي؟ اضغط هنا

تحليل تجريبي لنماذج الموضوع: يكشف عن العلاقات بين فرط الدم، وطول المستندات وتدابير الأداء

An Empirical Analysis of Topic Models: Uncovering the Relationships between Hyperparameters, Document Length and Performance Measures

323   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

نماذج الموضوع العصبي هي النماذج العصبية الأخيرة تهدف إلى استخراج الموضوعات الرئيسية من مجموعة من الوثائق.عادة ما تكون مقارنة هذه النماذج محدودة لأن فرط الدم محتجز ثابتة.في هذه الورقة، نقدم تحليلا تجريبي ومقارنة بين نماذج الموضوعات العصبية من خلال العثور على HyperParameters المثلى لكل نموذج لأربعة تدابير أداء مختلفة تبني تحسين بايزي هدف واحد.هذا يسمح لنا بتحديد متانة نموذج موضوع للعديد من مقاييس التقييم.كما أننا تظهر بشكل تجريبي تأثير طول الوثائق على مختلف المقاييس الأمثل واكتشف مقاييس التقييم الموجودة في صراع أو اتفاق مع بعضنا البعض.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

تتيح المعالجة الإضافية أنظمة تفاعلية تستجيب بناء على المدخلات الجزئية، وهي خاصية مرغوبة على سبيل المثال في عوامل الحوار. تقوم بنية المحولات الشعبية حاليا بطبيعتها بمعالجة التسلسلات ككل، تجرد فكرة الوقت. محاولات العمل الحديثة لتطبيق المحولات بشكل تدري جي عن طريق إعادة التشغيل - تدريجيا من خلال التغذية بشكل متكرر، إلى نموذج غير متقلب، بادئات إدخال أطول بشكل متزايد لإنتاج مخرجات جزئية. ومع ذلك، فإن هذا النهج مكلف بشكل حسابي ولا يتجادل بكفاءة للتسلسل الطويل. بالتوازي، نشهد جهود لجعل المحولات أكثر كفاءة، على سبيل المثال المحول الخطي (LT) مع آلية تكرار. في هذا العمل، ندرس جدوى LT ل NLU تدريجي باللغة الإنجليزية. تبين نتائجنا أن نموذج LT المتكرر لديه أفضل أداء تدريجي وسرعة الاستدلال أسرع مقارنة بالمحول القياسي واللفنت مع إعادة التشغيل التدريجي، بتكلفة جزء من جودة غير متزايدة (التسلسل الكامل). نظرا لأن إسقاط الأداء يمكن تخفيفه عن طريق تدريب النموذج لانتظار السياق الصحيح قبل الالتزام بإخراج وأن التدريب بادئة الإدخال مفيد لتقديم المخرجات الجزئية الصحيحة.
يتطلب محتوى الوسائط الاجتماعية المتغيرة بسرعة لنماذج الكشف عن إساءة الاستخدام قوية وممتع.ومع ذلك، فإن النماذج الخاضعة للإشراف على أحدث حدوث عرض الأداء المتدهورة عند تقييمها بشأن التعليقات المسيئة التي تختلف عن Training Corpus.نحقق في ما إذا كان أداء النماذج الخاضعة للإشراف للكشف عن إساءة استخدام سوريا يمكن تحسينه من خلال دمج معلومات إضافية من نماذج الموضوع، حيث يمكن أن يستنتج الأخير مخاليط الموضوعات الكامنة من العينات غير المرئية.على وجه الخصوص، نجمع بين المعلومات الموضعية مع التمثيلات من نموذج تم ضبطه لتصنيف التعليقات المسيئة.يكشف تحليل الأداء الخاص بنا أن نماذج الموضوعات قادرة على التقاط الموضوعات المتعلقة بالإساءة التي يمكنها نقلها عبر كوربورا، وتؤدي إلى تحسين التبرعات.
من النماذج الإحصائية إلى النماذج العصبية، تم اقتراح مجموعة واسعة من خوارزميات نمذجة الموضوعات في الأدب. ومع ذلك، بسبب تنوع مجموعات البيانات والمقاييس، لم تكن هناك العديد من الجهود لمقارنة أدائها بشكل منهجي على نفس المعايير وتحت نفس الشروط. في هذه الو رقة، نقدم مجموعة مختارة من 9 تقنيات نمذجة موضوعا من حالة الفن التي تعكس تنوع مناهج المهمة، لمحة عامة عن المقاييس المختلفة المستخدمة لمقارنة أدائها، وتحديات إجراء هذه المقارنة. نحن نقيم تجريبيا أداء هذه النماذج على إعدادات مختلفة تعكس مجموعة متنوعة من الظروف الواقعية من حيث حجم مجموعة البيانات وعدد المواضيع وتوزيع الموضوعات، بعد عمليات المعالجة والتتقييم المتطابقة. باستخدام كل من المقاييس التي تعتمد على الخصائص الجوهرية لمجموعات البيانات (مقاييس الاتساق المختلفة)، بالإضافة إلى المعرفة الخارجية (تضييع Word Adgeddings وموضوع الحقيقة)، تكشف تجاربنا عدة أوجه القصور فيما يتعلق بالممارسات المشتركة في تقييم نماذج الموضوعات.
تعاونت التمثيلات السياقية القائمة على نماذج اللغة العصبية حالة الفن في مختلف مهام NLP. على الرغم من نجاحها الكبير، فإن طبيعة هذه التمثيل لا تزال سرية. في هذه الورقة، نقدم ملكية تجريبية لهذه التمثيلات --- "المتوسط" "تقريب أول عنصر رئيسي". على وجه التح ديد، تظهر التجارب أن متوسط ​​هذه التمثيل يشارك نفس الاتجاه تقريبا مثل العنصر الرئيسي الأول في المصفوفة التي تعد أعمدة هذه التمثيلات. نعتقد أن هذا يفسر لماذا تمثيل متوسط ​​هو دائما خط أساس بسيط ولكنه قوي. تظهر امتحاناتنا الإضافية أن هذه الخاصية تعقد أيضا سيناريوهات أكثر تحديا، على سبيل المثال، عندما تكون التمثيلات من نموذج مباشرة بعد تهيئةها العشوائية. لذلك، نحن نقوم بالتخمين أن هذه الخاصية هي جوهرية لتوزيع التمثيلات وعدم الصلة بالضرورة بنية الإدخال. نحن ندرك أن هذه التمثيلات متابعة تجريبيا توزيعا طبيعيا لكل بعد، ومن خلال افتراض أن هذا صحيح، نوضح أن الممتلكات التجريبية يمكن أن تكون في الواقع رياضيا.
تتمثل الوصفة الحالية لأداء نموذج أفضل داخل NLP في زيادة حجم نموذج البيانات والتدريب.في حين أن ذلك يعطينا نماذج مع نتائج رائعة بشكل متزايد، إلا أنها تجعل من الصعب تدريب ونشر نماذج أحدث ل NLP بسبب زيادة التكاليف الحاسوبية.ضغط النموذج هو مجال للبحث الذي يهدف إلى تخفيف هذه المشكلة.يشمل هذا المجال أساليب مختلفة تهدف إلى الحفاظ على أداء نموذج أثناء تقليل حجمها.واحدة من هذه الأسلوب هو تقطير المعرفة.في هذه المقالة، نحقق في تأثير تقطير المعرفة لنماذج التعرف على الكيان المسمى باللغة السويدية.نظهر أنه في حين أن بعض نماذج علامات التسلسل تستفيد من تقطير المعرفة، وليس كل النماذج تفعل.هذا يطالبنا بطرح أسئلة حول المواقف التي تنفجر المعرفة النماذج مفيدة.نحن أيضا السبب في تأثير تقطير المعرفة على التكاليف الحاسوبية.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا