ترغب بنشر مسار تعليمي؟ اضغط هنا

نيريل: مجموعة بيانات روسية مع الكيانات المسماة المتداخلة والعلاقات والأحداث

NEREL: A Russian Dataset with Nested Named Entities, Relations and Events

283   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

في هذه الورقة، نقدم نيريل، مجموعة بيانات روسية للتعرف على الكيان المسمى واستخراج العلاقة.نيريل أكبر بكثير من مجموعات البيانات الروسية القائمة: حتى الآن تحتوي على 56 كيلو كيانات المسماة المشروحة وعلاقات مشروحة 39 ألفا.الفرق المهم له من مجموعات البيانات السابقة هو شرح للكيانات المسماة المتداخلة، وكذلك العلاقات داخل الكيانات المتداخلة وفي مستوى الخطاب.يمكن أن تسهل نيريل تطوير نماذج جديدة يمكنها استخراج العلاقات بين الكيانات المسماة المتداخلة، وكذلك العلاقات في كل من المستويات والوثائق.يحتوي نيريل أيضا على شرح الأحداث التي تنطوي على الكيانات المسماة وأدوارها في الأحداث.تتوفر مجموعة Nerel عبر https://github.com/nerel-ds/nerel.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

أظهرت نماذج الشبكة العصبية المستندة إلى ما يحقظ أن عروض حديثة (SOTA) على مهام معالجة اللغة الطبيعية (NLP). تعد تمثيل الجملة الأكثر استخداما لأساليب NLP ذات الاستخدام العصبي سلسلة من الكلمات الفرعية المختلفة عن تمثيل الجملة من الأساليب غير العصبية الت ي يتم إنشاؤها باستخدام تقنيات NLP الأساسية، مثل العلامات على جزء من الكلام (POS)، اسمه الكيان (NE) الاعتراف، والتحليل. تتلقى معظم نماذج NLP ذات القائمة العصبية فقط ناقلات ترميزها من سلسلة من الكلمات الفرعية التي تم الحصول عليها من نص الإدخال. ومع ذلك، لا يمكن الحصول على معلومات NLP الأساسية، مثل علامات نقاط البيع، ونتائج NES، وتحليل النتائج، إلخ، بشكل صريح من النص الكبير غير المستخديم المستخدمة في النماذج المستندة إلى ما يحقظ. تستكشف هذه الورقة استخدام NES على مهمتين يابانيين؛ تصنيف المستندات والجيل الرئيسي باستخدام النماذج القائمة على المحولات، للكشف عن فعالية معلومات NLP الأساسية. تظهر النتائج التجريبية مع ثمانية NES أساسية وحوالي 200 نسمة موسعة أن NES يحسن الدقة على الرغم من استخدام نموذج كبير يستند إلى الاحتمالات المدربة باستخدام بيانات نصية 70 جيجابايت.
تهدف مهمة الكشف عن الموقف إلى اكتشاف موقف سقسقة أو نص للحصول على هدف. يمكن تسمية هذه الأهداف كيانات أو جمل حرة (مطالبات). على الرغم من أن المهمة تنطوي على سبب سقسقة فيما يتعلق بهدف، إلا أننا نجد أنه من الممكن تحقيق دقة عالية على العديد من مجموعات بيا نات الكشف عن موقف تويتر المتوفرة علنا ​​دون النظر إلى الجملة المستهدفة. على وجه التحديد، حقق نموذج تصنيف Tweet بسيط أداء على مستوى بشري على مجموعة بيانات WT - WT وأكثر من دقة ثالثة في مختلف مجموعات البيانات الأخرى. نحن نبحث في وجود تحيزات في مثل هذه البيانات للعثور على الارتباطات الزائفة المحتملة لعلاقات موقد المعنويات والاختيار المعجمي المرتبط بفئة الموقف. علاوة على ذلك، نقترح مجموعة بيانات كبيرة جديدة خالية من هذه التحيزات وإظهار ملصفها على أنظمة الكشف عن الموقف الموجودة. تظهر نتائجنا التجريبية نطاقا كبيرا للبحث عن مهمة الكشف عن الموقف ويقترح العديد من الاعتبارات لإنشاء مجموعات بيانات الكشف عن الموقف في المستقبل.
الاعتراف بالكيانات المسماة في استفسارات محرك البحث القصيرة هي مهمة صعبة بسبب معلومات السياق الأضعف مقارنة بالجمل الطويلة.فشلت أنظمة التعرف على الكيان المسماة القياسية (NER) التي يتم تدريبها على الجمل الصحيحة والطويلة بشكل جيد على أداء هذه الاستفسارات بشكل جيد.في هذه الدراسة، نشارك جهودنا نحو إنشاء مجموعة بيانات تنظيفها ومصممة من استفسارات محرك البحث التركية الحقيقية (TR-SEQ) وإدخال ملصق ممت طويل لإرضاء احتياجات محرك البحث.يتم تدريب نظام NER من خلال تطبيق أحدث طريقة التعلم العميقة من أحدث برت إلى البيانات التي تم جمعها وإبلاغ أدائها العالي على استعلامات محرك البحث.علاوة على ذلك، قمنا بمقارنة نتائجنا مع أنظمة NER التركية التي من بين الفن.
في هذه الورقة، نقترح إطار جيل عصبي قابل للتحكم يمكن أن توجه بمرونة تلخيص الحوار مع تخطيط الكيانات المسماة الشخصية. يتم تعديل التسلسلات الشرطية لتحديد أنواع المعلومات أو منظور التركيز عند تشكيل ملخصات لمعالجة المشكلة الخاضعة للحدود في مهام التلخصات. ي دعم هذا الإطار نوعين من حالات الاستخدام: (1) منظور شامل، وهو حالة غرض لأغراض عامة مع عدم تحديد تفضيل المستخدم، بالنظر إلى نقاط موجزة من جميع محطات المحادثة والأشخاص المذكورين؛ (2) منظور التركيز، ضع الملخص بناء على كيان شخصي محدد من قبل المستخدم، والتي يمكن أن تكون واحدة من المحاورين أو أحد الأشخاص المذكورين في المحادثة. أثناء التدريب، استغلنا تخطيط حدوثها للكيانات المسماة الشخصية ومعلومات العناية الأساسية لتحسين الاتساق الزمني وتقليل الهلوسة في الجيل العصبي. تظهر النتائج التجريبية أن إطار عملنا المقترح يولد ملخصات بطلاقة ومتسقة في الواقع بموجب ضوابط التخطيط المختلفة باستخدام المقاييس الموضوعية والتقييمات البشرية.
مجردة التعرف على الكيانات المسماة (NER) هي مهمة NLP الأساسية، والتي صاغها عادة كتصنيف على سلسلة من الرموز. تشكل اللغات الغنية المورفولوجية (MRLS) تحديا لهذه الصياغة الأساسية، حيث لا تتزامن حدود الكيانات المسماة بالضرورة مع حدود الرمز المميز، بل يحترم ون الحدود المورفولوجية. لمعالجة NER في MRLS، نحتاج إلى الإجابة عن أسئلتين أساسيتين، وهي، ما هي الوحدات الأساسية التي سيتم تسميةها، وكيف يمكن الكشف عن هذه الوحدات وتصنيفها في إعدادات واقعية (أي، حيث لا يتوفر مورفولوجيا ذهبية). نحن نحقق تجريبيا في هذه الأسئلة حول معيار NENT الجديد، مع الشروح النيرية المتوازية من المستوى المتوازي ومستوى مورفيم، والتي نطورنا للعبرية الحديثة، وهي لغة غنية بالغريات المورفولوجية. تظهر نتائجنا أن النمذجة الصرخة على حدود مورفولوجية تؤدي إلى تحسين الأداء النيري، وأن الهندسة المعمارية المختلطة الهجينة، التي يسبقها ner يسبقها التحلل المورفولوجي، تتفوق بشكل كبير على خط الأنابيب القياسي، حيث يسبق التحلل المورفولوجي بشكل صارم NER، وضع شريط أداء جديد لكليهما العبرية NER والعبرية المهام المورفولوجية.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا