في وسائل التواصل الاجتماعي، يستخدم المستخدمون بشكل متكرر صور صغيرة تسمى الرموز التعبيرية في مشاركاتها. على الرغم من أن استخدام الرموز التعبيرية في النصوص يلعب دورا رئيسيا في أنظمة الاتصالات الحديثة، فقد تم إيلاء اهتمام أقل في مواقعهم في النصوص المعينة، على الرغم من أن المستخدمين الذين يختارون بعناية ووضع الرموز التعبيرية التي تطابق رسالتها. ستعمل استكشاف مواقع الرموز التعبيرية في النصوص على تعزيز الفهم للعلاقة بين الرموز التعبيرية والنصوص. نقوم بتوسيع مهمة التنبؤ بالملصقات الرموز التعبيرية مع مراعاة معلومات مواقع الرموز التعبيرية، من خلال تعلم موقف الرموز التعبيري في تغريدة الرموز التعبيرية للتنبؤ بميزة الرموز التعبيرية. توضح النتائج أن موقف الرموز التعبيري في النصوص هو فكرة جيدة لتعزيز أداء تنبؤ التسمية الرموز التعبيرية. التقييم البشري يتحقق من صحة موقع emoji مناسب في تغريدة، ومهمةنا المقترحة قادرة على جعل تغريدات أكثر فاخرة وطبيعية. بالإضافة إلى ذلك، النظر في موقف الرموز التعبيري يمكن أن يحسن أداء مهمة الكشف عن المفارقة مقارنة بتنبؤ تسمية الرموز التعبيرية. نبلغ أيضا عن النتائج التجريبية لمجموعة البيانات المعدلة، نظرا لمشكلة البيانات الأصلية للمهمة المشتركة الأولى للتنبؤ بتسمية EMOJI في Semeval2018.
In the social media, users frequently use small images called emojis in their posts. Although using emojis in texts plays a key role in recent communication systems, less attention has been paid on their positions in the given texts, despite that users carefully choose and put an emoji that matches their post. Exploring positions of emojis in texts will enhance understanding of the relationship between emojis and texts. We extend an emoji label prediction task taking into account the information of emoji positions, by jointly learning the emoji position in a tweet to predict the emoji label. The results demonstrate that the position of emojis in texts is a good clue to boost the performance of emoji label prediction. Human evaluation validates that there exists a suitable emoji position in a tweet, and our proposed task is able to make tweets more fancy and natural. In addition, considering emoji position can further improve the performance for the irony detection task compared to the emoji label prediction. We also report the experimental results for the modified dataset, due to the problem of the original dataset for the first shared task to predict an emoji label in SemEval2018.
المراجع المستخدمة
https://aclanthology.org/
تعتبر الرموز التعبيرية (الصور التوضيحية الرقمية الشعبية) في بعض الأحيان كنوع جديد من كود الكتابة المصطنعة والمتسقة عالميا. على الرغم من عالمياتهم المفترضة، هناك بعض الأدلة على أن الإحساس بالرموز التعبيرية، على وجه التحديد فيما يتعلق بالمشاعر، قد يتغي
مع صعود البحث عن تصنيف التعليق السام، تم إصدار المزيد والمزيد من البيانات المشروحة. أدت مجموعة واسعة من المهمة (لغات مختلفة، وعمليات وصفات ومخططات مختلفة) إلى كمية كبيرة من مجموعات البيانات غير المتجانسة التي يمكن استخدامها للتدريب واختبار إعدادات مح
من المعروف أن حساسية النماذج العميقة العصبية لضوضاء الإدخال مشكلة صعبة.في NLP، يتدهور أداء النموذج غالبا مع الضوضاء التي تحدث بشكل طبيعي، مثل الأخطاء الإملائية.لتخفيف هذه المشكلة، قد تستفيد النماذج البيانات الوكيل بشكل مصطنع.ومع ذلك، تم تحديد كمية ون
يعد معالجة عدم التطابق بين الأوصاف اللغوية الطبيعية واستعلامات SQL المقابلة تحديا رئيسيا للترجمة النصية إلى SQL. لسد هذه الفجوة، نقترح تمثيل SQL الوسيط (IR) يسمى SQL الطبيعية (Natsql). على وجه التحديد، يحافظ NATSQL على الوظائف الأساسية ل SQL، في حين
غالبا ما تنطوي النماذج الحسابية للغة البشرية على مشاكل في الحركة. على سبيل المثال، قد تهميش محلل احتمامي على العديد من الأشجار بشكل كبير لجعل التنبؤات. غالبا ما تستخدم الخوارزميات لمثل هذه المشكلات البرمجة الديناميكية وليست فريدة من نوعها دائما. يمكن