ترغب بنشر مسار تعليمي؟ اضغط هنا

استخراج المفاتيح من المقالات العلمية عبر تلخيص الاستخراج

Keyphrase Extraction from Scientific Articles via Extractive Summarization

449   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

يؤدي استخراج الموجات القصيرة تلقائيا من المستندات العلمية إلى تمثيل موجز قيم يمكن أن يفهم البشر ويمكنهم معالجة الآلات للمهام، مثل استرجاع المعلومات، تجميع المقالات وتصنيف المادة.تهتم هذه الورقة بأجزاء مقالة علمية يجب أن تعطى كمدخلات لطرق استخراج الحرارة.تأخذ أساليب التعلم العميق الحديثة الألقاب والملخصات كمدخلات بسبب زيادة التعقيد الحسابي في معالجة التسلسلات الطويلة، في حين أن الأساليب التقليدية يمكن أن تعمل أيضا مع النصوص الكاملة.العناوين والملخصات كثيفة في الجماهيرية، ولكن غالبا ما تفوت جوانب مهمة من المقالات، في حين أن النصوص الكاملة من ناحية أخرى أكثر ثراء في الجماهيرية ولكن الكثير من الضويرة.لمعالجة هذه المفاضلة، نقترح استخدام نماذج تلخيص الاستخراجية على النصوص الكاملة للمستندات العلمية.تظهر دراستنا التجريبية على 3 مجموعات مقالات باستخدام 3 طرق استخراج المفاتيح 3 نتائج واعدة.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

غالبا ما تعوق التنبؤ القائم على التعلم في مجال خصائص المواد بسبب عدم وجود مجموعات بيانات تدريبية كبيرة بما فيه الكفاية. غالبية بيانات القياس هذه مضمنة في الأدبيات العلمية والقدرة على استخراج هذه البيانات تلقائيا ضرورية لدعم تطوير أساليب التنبؤ بالخصا ئص الموثوقة. في هذا العمل، نصف منهجية لتطوير إطار استخراج الممتلكات التلقائي باستخدام ذوبان المواد كخاصية الهدف. نخلق مجموعة بيانات تدريبية وتقييم تحتوي على علامات للكيانات المتعلقة بالذوبان باستخدام مزيج من التعبيرات العادية والعلامة اليدوية. ثم قارنا خمسة نماذج التعرف على الكيان الاستفادة من كلا من المعماريين على مستوى الرمز المميز ومضمون مهمة تصنيف أسماء المذابة وقيم الذوبان وحدات الذوبان. بالإضافة إلى ذلك، نستكشف نهج محاولات رواية يرفع أدوات استخراج الاسم الكيميائي والكمية الآلي لتوليد مجموعات بيانات كبيرة لا تعتمد على العلامات اليدوية المكثفة. أخيرا، نقوم بإجراء تحليل لتحديد أسباب أخطاء التصنيف.
لقد شهدت النماذج الكبيرة الاحترادية نجاحا هائلا في مهام تلخيص الاستخراجية.في هذا العمل، يمكننا التحقيق في تأثير الاحتجاج على نظام تلخيص استخراج استخراج بيرت للوثائق العلمية.نحن نستمد تحسينات كبيرة من الأداء باستخدام خطوة محاكاة وسيطة تستفيد من مجموعا ت بيانات التلخيص الحالية والإبلاغ عن نتائج أحدث النتائج في مجموعة بيانات التلخيص العلمية التي تم إصدارها مؤخرا، SCITLDR.نقوم بتحليل خطوة محاكاة الوسيطة بشكل منهجي عن طريق تغيير حجم ومجال الإصلاح، وتغيير طول تسلسل الإدخال في المهمة المستهدفة والمهام المستهدفة المتغيرة.نحن نحقق أيضا كيف يتفاعل الوسيطة التي تتفاعل مع تضمين الكلمات السياقية المدربة على المجالات المختلفة.
تعد استخراج أجهزة القياسات الرائعة التي تلخص النقاط الرئيسية الوثيقة مهمة أساسية في معالجة اللغة الطبيعية.الأساليب الخاضعة للإشراف لاستخراج الصوت (KPE) تم تطويرها إلى حد كبير بناء على افتراض أن البيانات التدريبية مشروحة بالكامل.ومع ذلك، نظرا لصعوبة ع بوات مفاتيح الصوت، تعاني نماذج KPE بشدة من مشكلة غير مشروعة غير كاملة في العديد من السيناريوهات.تحقيقا لهذه الغاية، نقترح طريقة تدريب أكثر قوة تتعلم التخفيف من سوء الخضوع الذي جلبه خطوط الرعاية القصوى غير المسبقة.نقدم أخذ العينات السلبية لضبط فقدان التدريب، وإجراء تجارب تحت سيناريوهات مختلفة.تظهر الدراسات التجريبية حول مجموعات البيانات الاصطناعية ومجموعات البيانات المفتوحة أن طرازنا قوي للمشكلة المشروحة غير المكتملة وتجاوز الأساس المسبق.تجارب واسعة على خمسة مجموعات بيانات مجال علمي من المقاييس المختلفة توضح أن طرازنا تنافس مع الطريقة التي من بين الفن.
تهدف التلخيص التلقائي إلى استخراج معلومات مهمة من كميات كبيرة من البيانات النصية من أجل إنشاء إصدار أقصر من النصوص الأصلية مع الحفاظ على معلوماتها. تعتمد تدريب نماذج تلخيص الاستخراجية التقليدية بشكل كبير على الملصقات المهندسة البشرية مثل التعليقات ال توضيحية على مستوى الجملة للجدارة القصيرة. ومع ذلك، في العديد من حالات الاستخدام، فإن هذه الملصقات المهندسة البشرية غير موجودة وتشريح يدويا الآلاف من المستندات لغرض نماذج التدريب قد لا تكون ممكنة. من ناحية أخرى، غالبا ما تكون إشارات غير مباشرة للتلخيص متاحة، مثل إجراءات الوكيل لحوارات خدمة العملاء، العناوين الرئيسية للمقالات الإخبارية، التشخيص للسجلات الصحية الإلكترونية، إلخ. في هذه الورقة، نقوم بتطوير إطار عام يولد تلخيصا استخراجا نتيجة ثانوية من مهام التعلم الإشراف للإشارات غير المباشرة عبر مساعدة آلية الاهتمام. نختبر نماذجنا على حوارات خدمة العملاء ونتائج التجريبية أظهرت أن نماذجنا يمكن أن تختار بشكل موثوق الجمل والكلمات الإعلامية للتلخيص التلقائي.
الكلمات الرئيسية أو استخراج مفاتيح الصوت هي تحديد الكلمات أو العبارات التي تقدم الموضوعات الرئيسية للمستند.تقترح هذه الورقة الاهتمام، وهو نموذج انتباه هجين، لتحديد الرابط القصوى من وثيقة بطريقة غير مخالفة.تعاني Natheatrank حساب اهتمام الذات والاهتمام عبر النموذج اللغوي المدرب مسبقا.تم تصميم اهتمام الذات لتحديد أهمية المرشح في سياق الجملة.يتم احتساب الاعتماد المتبادل لتحديد الأهمية الدلالية بين المرشح والجمل في وثيقة.نحن نقيم الاهتمام بثلاث مجموعات بيانات متاحة للجمهور ضد سبعة خطوط خطوط خطوط خطوط خطوط خطوط خطوط خطوط فيه.تظهر النتائج أن Natheationrank هو نموذج استخراج مفاتيح مفاتيح غير مؤظفي فعال وقوي على الوثائق الطويلة والقصيرة.يتوفر شفرة المصدر على Github.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا