يؤدي استخراج الموجات القصيرة تلقائيا من المستندات العلمية إلى تمثيل موجز قيم يمكن أن يفهم البشر ويمكنهم معالجة الآلات للمهام، مثل استرجاع المعلومات، تجميع المقالات وتصنيف المادة.تهتم هذه الورقة بأجزاء مقالة علمية يجب أن تعطى كمدخلات لطرق استخراج الحرارة.تأخذ أساليب التعلم العميق الحديثة الألقاب والملخصات كمدخلات بسبب زيادة التعقيد الحسابي في معالجة التسلسلات الطويلة، في حين أن الأساليب التقليدية يمكن أن تعمل أيضا مع النصوص الكاملة.العناوين والملخصات كثيفة في الجماهيرية، ولكن غالبا ما تفوت جوانب مهمة من المقالات، في حين أن النصوص الكاملة من ناحية أخرى أكثر ثراء في الجماهيرية ولكن الكثير من الضويرة.لمعالجة هذه المفاضلة، نقترح استخدام نماذج تلخيص الاستخراجية على النصوص الكاملة للمستندات العلمية.تظهر دراستنا التجريبية على 3 مجموعات مقالات باستخدام 3 طرق استخراج المفاتيح 3 نتائج واعدة.
Automatically extracting keyphrases from scholarly documents leads to a valuable concise representation that humans can understand and machines can process for tasks, such as information retrieval, article clustering and article classification. This paper is concerned with the parts of a scientific article that should be given as input to keyphrase extraction methods. Recent deep learning methods take titles and abstracts as input due to the increased computational complexity in processing long sequences, whereas traditional approaches can also work with full-texts. Titles and abstracts are dense in keyphrases, but often miss important aspects of the articles, while full-texts on the other hand are richer in keyphrases but much noisier. To address this trade-off, we propose the use of extractive summarization models on the full-texts of scholarly documents. Our empirical study on 3 article collections using 3 keyphrase extraction methods shows promising results.
المراجع المستخدمة
https://aclanthology.org/
غالبا ما تعوق التنبؤ القائم على التعلم في مجال خصائص المواد بسبب عدم وجود مجموعات بيانات تدريبية كبيرة بما فيه الكفاية. غالبية بيانات القياس هذه مضمنة في الأدبيات العلمية والقدرة على استخراج هذه البيانات تلقائيا ضرورية لدعم تطوير أساليب التنبؤ بالخصا
لقد شهدت النماذج الكبيرة الاحترادية نجاحا هائلا في مهام تلخيص الاستخراجية.في هذا العمل، يمكننا التحقيق في تأثير الاحتجاج على نظام تلخيص استخراج استخراج بيرت للوثائق العلمية.نحن نستمد تحسينات كبيرة من الأداء باستخدام خطوة محاكاة وسيطة تستفيد من مجموعا
تعد استخراج أجهزة القياسات الرائعة التي تلخص النقاط الرئيسية الوثيقة مهمة أساسية في معالجة اللغة الطبيعية.الأساليب الخاضعة للإشراف لاستخراج الصوت (KPE) تم تطويرها إلى حد كبير بناء على افتراض أن البيانات التدريبية مشروحة بالكامل.ومع ذلك، نظرا لصعوبة ع
تهدف التلخيص التلقائي إلى استخراج معلومات مهمة من كميات كبيرة من البيانات النصية من أجل إنشاء إصدار أقصر من النصوص الأصلية مع الحفاظ على معلوماتها. تعتمد تدريب نماذج تلخيص الاستخراجية التقليدية بشكل كبير على الملصقات المهندسة البشرية مثل التعليقات ال
الكلمات الرئيسية أو استخراج مفاتيح الصوت هي تحديد الكلمات أو العبارات التي تقدم الموضوعات الرئيسية للمستند.تقترح هذه الورقة الاهتمام، وهو نموذج انتباه هجين، لتحديد الرابط القصوى من وثيقة بطريقة غير مخالفة.تعاني Natheatrank حساب اهتمام الذات والاهتمام