تصف هذه الورقة نظامنا للحصول على مهمة Semeval-2021 4: قراءة الفهم من معنى مجردة.لإنجاز هذه المهمة، نستخدم الهندسة المعمارية لشبكة إيلاءات الرسوم البيانية المعززة للمعرفة مع استراتيجية تحويل الفضاء الدلالي الردد.إنه يرفع المعرفة غير المتجانسة لتعلم الأدلة الكافية، ويسعى للحصول على مساحة دلالية فعالة من المفاهيم المجردة لتحسين قدرة الجهاز بشكل أفضل على فهم المعنى التجريدي للغة الطبيعية.تظهر النتائج التجريبية أن نظامنا يحقق أداء قويا في هذه المهمة من حيث كلا من غير المحتملة وغير المعقدة.
This paper describes our system for SemEval-2021 Task 4: Reading Comprehension of Abstract Meaning. To accomplish this task, we utilize the Knowledge-Enhanced Graph Attention Network (KEGAT) architecture with a novel semantic space transformation strategy. It leverages heterogeneous knowledge to learn adequate evidences, and seeks for an effective semantic space of abstract concepts to better improve the ability of a machine in understanding the abstract meaning of natural language. Experimental results show that our system achieves strong performance on this task in terms of both imperceptibility and nonspecificity.
المراجع المستخدمة
https://aclanthology.org/
تقدم هذه الورقة المهمة المشتركة Semeval-2021 4: قراءة الفهم من معنى مجردة (Recam). تم تصميم هذه المهمة المشتركة للمساعدة في تقييم قدرة الآلات في تمثيل وفهم مفهوم مجردة. يتعين على النظام المقابل، من المتوقع أن يختار نظام المشاركة، الإجابة الصحيحة من خ
تصف هذه الورقة النظام الفائز ل SubTask 2 والنظام الموضح الثاني لبرنامج التعرية الفرعية 1 في مهمة Semeval 2021 4: قراءة القراءة من معنى مجردة.نقترح استخدام جهاز تمييز Electra المصدر الذي يزعجني اختيار أفضل كلمة مجردة من خمسة مرشحين.يتم إدخال آلية الاه
تركز معظم مهام الإجابة على معظم الأسئلة على التنبؤ بإجابات ملموسة، مثل الكيانات المسماة.يمكن تحقيق هذه المهام عادة عن طريق فهم السياقات دون وجود معلومات إضافية مطلوبة.في قراءة الفهم من المهمة المعنى التجريدي (إعادة التقييم)، يتم تقديم الإجابات المجرد
تصف هذه الورقة نظامنا للمهمة 4 من Semeval-2021: قراءة الفهم من معنى مجردة (Recam).شاركنا في جميع المهام الفرعية حيث كان الهدف الرئيسي هو التنبؤ بكلمة مجردة مفقودة من بيان.نحن نضرب نماذج اللغة الملثمين المدربة مسبقا وهي بيرت وألبرت واستخدمت فرقة لهؤلا
تهدف مهمة Sereval 4 إلى إيجاد خيار مناسب من المرشحين المتعددين لحل مهمة فهم القراءة في الجهاز.تقترح معظم الأساليب الموجودة على Concat السؤال والخيار معا لتشكيل نموذج على دراية بالسياق.ومع ذلك، نقول أن التسلسلات المباشرة يمكن أن توفر فقط سياقا محظوظا