تعد تتبع ولاية الحوار (DST) مهمة فرعية لأنظمة الحوار القائمة على المهام حيث يتم تتبع نية المستخدم من خلال ثلاثة أضعاف ثلاثة ثلاث مرات يمكن أن يكون من الصعب تمديد طرازات DST الحالية لمجموعات بيانات جديدة مع مجالات / فتحات أكبر ترجع أساسا إلى أي من السببين - 1) تنبؤ فتحة المجال كزوج، والثاني) تبعية المعلمات النموذجية على عدد الفتحات والمجالات وبعد في هذا العمل، نقترح معالجة هذه المشكلات باستخدام نموذج DST الهرمي (Hi-DS). بدور معين، يكتشف النموذج أولا تغيير في المجال متبوعا بتنبؤ المجال إذا لزم الأمر. ثم تقرر إجراء مناسب لكل فتحة في المجالات المتوقعة ويجد قيمتها وفقا لذلك. المعلمات النموذجية ل HI-DST مستقلة عن عدد المجالات / الفتحات. نظرا للنمذجة الهرمية، فإنه يحقق O (| M | + | N |) تنبؤ الدولة المعتقد بدوره واحد حيث M و N هي مجموعة من المجالات الفريدة والفتحات على التوالي. نقول أن الهيكل الهرمي يساعد في نموذج الشرح ويجعله قابل للتوسيع بسهولة إلى مجموعات بيانات جديدة. تشير التجارب في مجموعة بيانات MultiWoz إلى أن نموذجنا المقترح يحقق أداء دقة مشتركة قابلة للمقارنة بنماذج DST الحديثة.
Dialogue State Tracking (DST) is a sub-task of task-based dialogue systems where the user intention is tracked through a set of (domain, slot, slot-value) triplets. Existing DST models can be difficult to extend for new datasets with larger domains/slots mainly due to either of the two reasons- i) prediction of domain-slot as a pair, and ii) dependency of model parameters on the number of slots and domains. In this work, we propose to address these issues using a Hierarchical DST (Hi-DST) model. At a given turn, the model first detects a change in domain followed by domain prediction if required. Then it decides suitable action for each slot in the predicted domains and finds their value accordingly. The model parameters of Hi-DST are independent of the number of domains/slots. Due to the hierarchical modeling, it achieves O(|M|+|N|) belief state prediction for a single turn where M and N are the set of unique domains and slots respectively. We argue that the hierarchical structure helps in the model explainability and makes it easily extensible to new datasets. Experiments on the MultiWOZ dataset show that our proposed model achieves comparable joint accuracy performance to state-of-the-art DST models.
المراجع المستخدمة
https://aclanthology.org/
في أنظمة الحوار الموجهة نحو المهام، تميل أساليب تتبع حكومية الحوار الحديثة إلى أداء جيل تمرير واحد من حالة الحوار بناء على حالة الحوار السابقة. أخطاء هذه النماذج التي تم إجراؤها بدورها الحالي عرضة للنقل إلى المنعطف التالي، مما تسبب في نشر الأخطاء. في
تعد تتبع ولاية الحوار مركزيا لأنظمة الحوار الموجهة نحو المهام متعددة المجالات، مسؤولة عن استخراج المعلومات من كلام المستخدمين.نقدم هندسة هجينة جديدة تعزز GPT-2 مع التمثيلات المستمدة من شبكات اهتمام الرسوم البيانية بطريقة تسمح بالتنبؤ السببية والتسلسل
في الآونة الأخيرة، تم توسيع تركيز تتبع حالة الحوار من مجال واحد إلى مجالات متعددة.تتميز المهمة بالفتحات المشتركة بين المجالات.نظرا لأن السيناريو يحصل على مزيد من المعقدة، تصبح مشكلة خارج المفردات أيضا شارما.النماذج الحالية ليست مرضية لحل تحديات تكامل
تتبع مجردة تتبع حوار الحوار لتحسين تفسير أهداف المستخدم وتغذية التعلم السياسي المصب هو عنق الزجاجة في إدارة الحوار.كانت الممارسة الشائعة تعاملها كمشكلة تصنيف محتوى الحوار في مجموعة من أزواج القيمة ذات القيمة المحددة مسبقا، أو توليد قيم لفات مختلفة با
نقدم بنية سريعة وقابلة للتحجيم تسمى التحلل المعياري الصريح (EMD)، حيث ندمج كل من الأساليب القائمة على التصنيف واستخراج واستخراجها وتصميم أربع وحدات (للحصول على تصنيف التمساح والتسلسل) لاستخراج الدول الحوار بشكل مشترك.النتائج التجريبية المستندة إلى مج