تقليديا، تم حل مشاكل نقل مستوى الأحرف مع طرازات الحالة المحدودة المصممة لتشفير المعرفة الهيكلية واللغوية بالعملية الأساسية، في حين أن النهج الحديثة تعتمد على قوة ومرونة نماذج التسلسل إلى التسلسل مع الاهتمام.التركيز على سيناريو التعلم الأقل استكشاف غير مخالفات، قارن الفصولتين النموذجيين جنبا إلى جنب وتجد أنهم يميلون إلى جعل أنواع مختلفة من الأخطاء حتى عند تحقيق أداء مماثل.نقوم بتحليل توزيعات فئات الأخطاء المختلفة باستخدام مهامين غير مدفوعين كمثبتين: تحويل النص الرباني بشكل غير رسمي إلى البرنامج النصي الأصلي لغته (للروسية والعربية وكانيا) وترجم بين زوج من اللغات ذات الصلة عن كثب (الصربية والبوسني).أخيرا، نقوم بالتحقيق في كيفية دمج نماذج الحالة المحدودة والتسلسل في وقت فك التشفير يؤثر على الإخراج الكمي والنوعي.
Traditionally, character-level transduction problems have been solved with finite-state models designed to encode structural and linguistic knowledge of the underlying process, whereas recent approaches rely on the power and flexibility of sequence-to-sequence models with attention. Focusing on the less explored unsupervised learning scenario, we compare the two model classes side by side and find that they tend to make different types of errors even when achieving comparable performance. We analyze the distributions of different error classes using two unsupervised tasks as testbeds: converting informally romanized text into the native script of its language (for Russian, Arabic, and Kannada) and translating between a pair of closely related languages (Serbian and Bosnian). Finally, we investigate how combining finite-state and sequence-to-sequence models at decoding time affects the output quantitatively and qualitatively.
المراجع المستخدمة
https://aclanthology.org/
تتضمن النهج الحديثة لإملاء مشكلة تصحيح الأخطاء الإملائي نماذج SEQ2SEQ القائمة على المحولات، والتي تتطلب مجموعات تدريبية كبيرة وتعاني من وقت الاستدلال البطيء؛وتسلسل نماذج وضع التسلسل المستندة إلى ترميز المحولات مثل بيرت، والتي تنطوي على مساحة تسمية ال
مجردة المقاييس المستخدمة بشكل أساسي لتقييم نماذج توليد اللغة الطبيعية (NLG)، مثل Bleu أو Meteor، تفشل في تقديم معلومات حول تأثير العوامل اللغوية الأداء. التركيز على تحقيق السطح (SR)، ومهمة تحويل شجرة تبعية غير مرتبة في جملة رائعة، نقترح إطارا لتحليل
تصف هذه الورقة التقديمات HEL-LJU إلى المهمة المشتركة متعددة الأبعاد على التطبيع المعجمي متعدد اللغات.يعتمد نظامنا على خطوة مسبقة تصنيف صفقة Bert Token، حيث يتم توقع كل رمزي نوع التحول الضروري (لا شيء، أحرف كبيرة، صغيرة، كاستفغل، تعديل)، وخطوة SMT على
أصبحت نماذج لغة كبيرة مسببة الاحترام باستخدام بنية الشبكة العصبية المحولات هي منهجية مهيمنة للعديد من مهام معالجة اللغة الطبيعية، مثل الإجابة على الأسئلة، تصنيف النص، غموض معنى الكلمة، إكمال النص والترجمة الآلية. عادة ما تضم مئات الملايين من المعلم
يتطلب تصحيح الأخطاء النحوية (GEC) مجموعة من أزواج الجملة الجملة / النحوية المسمى للتدريب، ولكن الحصول على مثل هذه التوضيحية يمكن أن تكون باهظة الثمن. في الآونة الأخيرة، أظهر إطار عمل استراحة IT-IT (BIFI) نتائج قوية على تعلم إصلاح برنامج مكسور دون أي