ترغب بنشر مسار تعليمي؟ اضغط هنا

النمذجة بنية بنية في الرسوم البيانية استخدام Word مع نموذج كتلة مؤشر الاستوكاستك الموزونة

Modeling Sense Structure in Word Usage Graphs with the Weighted Stochastic Block Model

309   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

نقترح أن نقترح تصميم الرسوم البيانية التي تم تفكيكها عن الكلمات الفائقة من الفئة الدلالية الفائقة بين استخدامات الكلمات مع صياغة Bayesian لنموذج Black Block المرجح، وهو نموذج عام لرسوم بيانية عشوائية شعبية في علم الأحياء والفيزياء والعلوم الاجتماعية.من خلال توفير نموذج احتمامي للكلمة المتقدمة مما يعني أننا نهدف إلى الاقتراب من الفكرة الزلقة وحتى الآن استخدامها على نطاق واسع من معنى كلمة بطريقة جديدة.يتيح لنا الإطار المقترح من مقارنة نماذج Word بصرامة فيما يتعلق بملائمها للبيانات.نحن نؤدي تجارب واسعة وتحديد النموذج الأكثر كفاءة تجريبيا.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

أحدث دراسات لاستخراج العلاقات (إعادة) الاستفادة من شجرة التبعية من جملة الإدخال لإدماج المعلومات السياقية التي يحركها بناء الجملة لتحسين الأداء النموذجي، مع القليل من الاهتمام المدفوع للقيود حيث محلل التبعية عالية الجودة في معظم الحالات غير متوفرة، خ اصة في سيناريوهات البناء. لمعالجة هذا القيد، في هذه الورقة، نقترح شبكات اتصال بياني اختصاصية (A-GCN) لتحسين الأساليب العصبية بطريقة غير مرئية لبناء الرسم البياني للسياق، دون الاعتماد على وجود محلل التبعية. على وجه التحديد، نقوم بإنشاء الرسم البياني من N-Grams المستخرجة من معجم مبني من المعلومات المتبادلة غير التاريخية (PMI) وتطبيق الانتباه عبر الرسم البياني. لذلك، يتم مرجح أزواج كلمة مختلفة من السياقات داخل وعبر N-Grams في النموذج وتسهيل إعادة استخدامها وفقا لذلك. النتائج التجريبية مع المزيد من التحليلات على مجموعات بيانات قياسية باللغة الإنجليزية لإظهار فعالية نهجنا، حيث يلاحظ أداء حديثة على كلا البيانات.
تلقى تلخيص محادثة الجماع اهتماما كبيرا مؤخرا.ومع ذلك، غالبا ما تعاني هذه الملخصات التي تم إنشاؤها من محتوى غير كاف أو زائد أو غير صحيح، ويعزى ذلك إلى حد كبير إلى الخصائص غير المنظمة والمعقدة للتفاعلات البشرية البشرية.تحقيقا لهذه الغاية، نقترح نموذجا صراحة الهياكل الغنية في محادثات للحصول على تلخيص محادثة أكثر دقة ودقيقة، من خلال إدراج علاقات الخطاب الأولى بين الكلام والأربع من الليئات (WHO - ما ") في كلام من خلال الرسوم البيانية المنظمة لتشفير المحادثات بشكل أفضلثم تصميم وحدة فك ترميز متعددة الحبيبات لتوليد ملخصات من خلال الجمع بين جميع مستويات المعلومات.تشير التجارب إلى أن نماذجنا المقترحة تفوقت على الطرق الحديثة والتعميم بشكل جيد في المجالات الأخرى من حيث التقييمات التلقائية والأحكام البشرية.لقد أصدرنا علنا رمزنا في https://github.com/gt-salt/sulture-aware-bart.
أصبح نص قصير في الوقت الحاضر أشكالا أكثر عصرية من البيانات النصية، على سبيل المثال، منشورات Twitter، عناوين الأخبار ومراجعات المنتجات. يلعب استخراج الموضوعات الدلالية من النصوص القصيرة دورا مهما في مجموعة واسعة من تطبيقات NLP، ومصمم الموضوع العصبي ال آن أداة رئيسية لتحقيقها. بدافع من تعلم موضوعات أكثر متماسكا ودلاليا، في هذه الورقة نطور نموذج موضوع عصبي رواية يدعى طراز موضوع الرسم البياني المزدوج Word (DWGTM)، والذي يستخرج الموضوعات من الرسوم البيانية المرتبطة بالكلمة المتزامنة وترابط العلاقة الدلالية. لتكون محددة، نتعلم ميزات كلمة من الرسم البياني العالمي للكلمة المشتركة، وذلك لاستيعاب معلومات حدوث كلمة غنية؛ ثم نقوم بإنشاء ميزات نصية مع ميزات Word، وإطعامها في شبكة تشفير للحصول على نسب موضوعية لكل نص؛ أخيرا، نعيد إعادة بناء الرسوم البيانية الرسمية والكلمات الرسم البياني مع التوزيعات الموضعية وميزات Word، على التوالي. بالإضافة إلى ذلك، لالتقاط دلالات الكلمات، نقوم أيضا بتطبيق ميزات Word لإعادة بناء الرسم البياني للعلاقة الدلالية كلمة محسوبة بواسطة Adgeddings المدربة للكلمة المدربة مسبقا. بناء على هذه الأفكار، نقوم بصياغة DWGTM في نموذج الترميز التلقائي وتدريبه بكفاءة مع روح الاستدلال التباين العصبي. تتحقق النتائج التجريبية التي يمكنها توليد DWGTM موضوعات أكثر متماسكة من النماذج الأساسية من طرازات موضوع الأساس.
من الصعب على معنى كلمة الالتقاط، متزامن وغسيميا.في هذه الورقة، نقوم بصف إنشاء أكبر مورد للمصادف من مؤتمرات السياق المدرجة، وتعني كلمة التوضيح في أربع لغات مختلفة، بناء على أحكام قلوة من الدلالية البشرية 100000.نحن نصف بالتفصيل العملية التوضيحية الإضا فية متعددة المستديرة، واختيار خوارزمية تجميع لتجميع التسمم في الحواس، وحجز - يستخدم DIACHRONIC و SYNCHRONIC - لهذه المسرد.
نحن نقدم Graformer، وهي عبارة عن بنية ترميز ترميز ترميز محول المبالية على أساس الرسوم البيانية إلى النص.مع انتباهنا عن الرسوم البيانية لروايتنا، يعتمد ترميز العقدة على جميع العقد في الرسم البياني للإدخال - ليس فقط الجيران المباشر - يسهل اكتشاف أنماط عالمية.نحن نمثل العلاقة بين العقدتين كطابع أقصر المسار بينهما.يتعلم Graformer الوزن هذه العلاقات العقدة العقدة بشكل مختلف عن رؤوس اهتمام مختلفة، وبالتالي تعلم وجهات نظر متصلة بشكل مختلف عن الرسم البياني للإدخال.نقوم بتقييم GRAFORMER على اثنين من المعايير الشهيرة في الرسم البياني إلى النص، وجدول الأعمال و Webnlg، حيث يحقق أداء قوي أثناء استخدام العديد من المعلمات أقل من الأساليب الأخرى.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا