الملخص لتطوير تطبيقات NLP المتطرفة المنطقية، وهو رسم بياني معرفي شامل ودقيق للعموم (CKG).إنها تستغرق وقتا طويلا لإنشاء CKGS يدويا والعديد من جهود البحثية التي تم تخصيصها للبناء التلقائي CKGS.تركز النهج السابقة على توليد المفاهيم التي لديها علاقات مباشرة واضحة مع المفاهيم القائمة وتفتقر إلى القدرة على توليد مفاهيم غير واضحة.في هذا العمل، نهدف إلى سد هذه الفجوة.نقترح الإطار العام لإحاطاء بيئة الرسم البياني إلى مسارات يرفع هياكل مرتفعة في CKGS لالتقاط علاقات عالية الجودة بين المفاهيم.نحن إنشاء هذا الإطار العام إلى أربع حالات خاصة: المسار الطويل، المسار إلى المسار، جهاز التوجيه، ورأس الرسم البياني - مسار العقدة.تجارب على مجموعة بيانات اثنين تثبت فعالية أساليبنا.سيتم إصدار الرمز عبر مستودع GitHub العام.
Abstract To develop commonsense-grounded NLP applications, a comprehensive and accurate commonsense knowledge graph (CKG) is needed. It is time-consuming to manually construct CKGs and many research efforts have been devoted to the automatic construction of CKGs. Previous approaches focus on generating concepts that have direct and obvious relationships with existing concepts and lack an capability to generate unobvious concepts. In this work, we aim to bridge this gap. We propose a general graph-to-paths pretraining framework that leverages high-order structures in CKGs to capture high-order relationships between concepts. We instantiate this general framework to four special cases: long path, path-to-path, router, and graph-node-path. Experiments on two datasets demonstrate the effectiveness of our methods. The code will be released via the public GitHub repository.
المراجع المستخدمة
https://aclanthology.org/
حققت الرسم البياني المعرفي، الذي يمثل الكيانات والعلاقات في الرسوم البيانية المعرفة مع ناقلات عالية الأبعاد، تقدما كبيرا في التنبؤ بالربط. استكشف المزيد من الباحثين القدرات التمثيلية للنماذج في السنوات الأخيرة. وهذا هو، يحققون في نماذج تمثيلية أفضل ل
تناقش ورقة الاستقصاء / المركبة هذه الطرق لتحسين تغطية الموارد مثل WordNet.RAPP تقدر الارتباطات، RHO، بين إحصائيات كوربوس ومعايير الهاجولية.RHO يحسن مع الكمية (حجم كوربوس) والجودة (التوازن).1M الكلمات تكفي لتقديرات بسيطة (ترددات غير منغرام)، ولكن 100x
تم إحراك المصالح المتزايدة في أنظمة الموافقة على المحادثة (CRS)، والتي تستكشف تفضيل المستخدم من خلال تفاعلات المحادثة من أجل تقديم توصية مناسبة. ومع ذلك، لا يزال هناك نقص في القدرة في CRS الحالية إلى (1) اجتياز مسارات التفكير المتعددة على المعرفة الأ
تعكس العلاقات في معظم الرسوم البيانية المعارف التقليدية (KGS) فقط الاتصالات الثابتة والواقعية، ولكنها تفشل في تمثيل الأنشطة الديناميكية وتغير الدولة حول الكيانات. في هذه الورقة، نؤكد على أهمية دمج الأحداث في تعلم تمثيل KG، واقتراح نموذج Eventke Event
تمت دراسة Graph Basic Knowledge (SKG) (SKGE) بشكل مكثف في السنوات الماضية.في الآونة الأخيرة، ظهرت شركة الرسم البياني للمعرفة (TKG) (TKGE).في هذه الورقة، نقترح إطار عمل تضمين الحقائق الزمنية العودية (RTFE) لإجراء عمليات زراعة النماذج إلى TKGS وتعزيز أ