ترغب بنشر مسار تعليمي؟ اضغط هنا

نماذج لغة شبه قابلة للتكيف

Adaptive Semiparametric Language Models

396   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

مجردة نقدم نموذج لغة يجمع بين شبكة عصبية حديثة كبيرة (I.E.، محول) مع مكون ذاكرة Episodic غير حدودي غير رسمي في بنية متكاملة.يستخدم نموذجنا سياق موسع قصير الأجل من خلال التخزين المؤقت للدول المخفية المحلية - - مماثلة لذاكرة محول-XL --- وعلى المدى الطويل الأجل من خلال استرجاع مجموعة من أقرب رموز جار في كل ساعة عملية تجريفية.نقوم بتصميم وظيفة Gating للجمع بين مصادر معلومات متعددة لتقديم التنبؤ.تتيح هذه الآلية للطراز استخدام السياق المحلي أو الذاكرة قصيرة الأجل أو الذاكرة الطويلة الأجل (أو أي مزيج منهم) على أساس مخصص حسب السياق.تظهر تجارب مجموعات بيانات النمذجة القائمة على الكلمة القائمة على الكلمة فعالية طريقةنا المقترحة مقارنة مع خطوط الأساس القوية.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

تولد نماذج اللغة الكبيرة (LM) نص بطلاقة بشكل ملحوظ ويمكن تكييفها بكفاءة عبر مهام NLP. قياس وضمان جودة النص الذي تم إنشاؤه من حيث السلامة أمر ضروري لنشر LMS في العالم الحقيقي؛ تحقيقا لهذه الغاية، غالبا ما يعتمد العمل السابق على التقييم التلقائي لسمية LM. نناقش هذا النهج بشكل خطير، وتقييم العديد من استراتيجيات تخفيف السمية فيما يتعلق بالتقييم التلقائي والبشري، وتحليل عواقب التخفيف من السمية من حيث التحيز النموذجي وجودة LM. نوضح أنه في حين أن استراتيجيات التدخل الأساسية يمكن أن تتحسن بشكل فعال مقاييس تلقائية تم تأسيسها مسبقا على مجموعة بيانات Realtoxicyprompts، فإن هذا يأتي عند تكلفة انخفاض تغطية LM لكلا النصوص حول، ولهجات المجموعات المهمشة. بالإضافة إلى ذلك، نجد أن التصدير البشري غالبا ما يختلفون في درجات سمية تلقائية عالية بعد تدخلات تخفيض السمية القوي --- تسليط الضوء على مزيد من الفروق الدقيقة المشاركة في التقييم الدقيق لسامة LM.
أصبحت نماذج اللغة متعددة اللغات المدربة مسبقا كتلة مبنى مهمة في معالجة اللغة الطبيعية متعددة اللغات.في الورقة الحالية، نحقق في مجموعة من هذه النماذج لمعرفة مدى نقل المعرفة على مستوى الخطاب عبر اللغات.يتم ذلك بتقييم منهجي على مجموعة أوسع من مهام مستوى الخطاب مما تم تجميعه مسبقا.نجد أن عائلة XLM-Roberta من نماذج تظهر باستمرار أفضل أداء، من خلال نماذج أحادية جيدة جيدة في وقت واحد ومهينة القليل نسبيا في إعداد طلقة صفرية.تشير نتائجنا أيضا إلى أن التقطير النموذجي قد تؤذي قدرة النقل عبر اللغات من تمثيل الجملة، في حين أن الاختلاف اللغوي على الأكثر تأثير متواضع.نأمل أن يكون جناح اختبارنا، الذي يغطي 5 مهام مع ما مجموعه 22 لغة في 10 أسر متميزة، بمثابة منصة تقييم مفيدة للأداء متعدد اللغات في مستوى الجملة وما بعدها.
أصبحت نماذج اللغة متعددة اللغات المحددة مسبقا أداة شائعة في تحويل قدرات NLP إلى لغات الموارد المنخفضة، وغالبا مع التعديلات.في هذا العمل، ندرس أداء، قابلية القابلية للضغط، والتفاعل بين اثنين من هذه التكيفات: تكبير المفردات وتروية النصوص.تقييماتنا حول العلامات بين الكلام، تحليل التبعية الشامل، والاعتراف الكياري المسمى في تسعة لغات متنوعة منخفضة الموارد تدعم صلاحية هذه الأساليب مع رفع أسئلة جديدة حول كيفية تكييف النماذج متعددة اللغات على النحو الأمثل إلى إعدادات الموارد المنخفضة.
أصبحت التمثيل التعلم للنص عبر الاحتمالات نموذج لغة على كوربوس كبيرة أصبح نقطة انطلاق قياسية لبناء أنظمة NLP. يقف هذا النهج على النقيض من السيارات الآلية، كما تم تدريبه على النص الخام، ولكن بهدف التعلم لترميز كل إدخال كجاغر يتيح إعادة الإعمار الكامل. AutoNCoders جذابة بسبب هيكل الفضاء الكامن وخصائصها التوليدية. لذلك نستكشف بناء AutoNCoder على مستوى الجملة من نموذج لغة محول محول مسبقا. نحن نقوم بتكييف هدف نمذجة اللغة الملثمين كإنتاجية، وتمديد واحد، في حين أن تدرب فقط عنق الزجاجات الجملة ومكتشف محول بطبقة واحدة. نوضح أن تمثيلات الجملة التي اكتشفها طرازنا تحقق جودة أفضل من الأساليب السابقة التي استخراج تمثيلات من المحولات المسبدة مسبقا على مهام تشابه النص، ونقل النمط (مثال على الجيل الخاضع للرقابة)، ومهام تصنيف الجملة واحدة في معيار الغراء، أثناء استخدام عدد أقل من النماذج المحددة مسبقا.
كان التقدم المحرز الأخير في نمذجة اللغة مدفوعة ليس فقط بالتقدم في البنيات العصبية، ولكن أيضا من خلال تحسين الأجهزة والتحسين.في هذه الورقة، نؤيد نموذج اللغة الاحتمالية العصبية (NPLM) من بنغيو وآخرون.(2003)، والتي تسلسل ببساطة تضمين كلمة داخل نافذة ثاب تة ويمرر النتيجة من خلال شبكة تغذية إلى الأمام للتنبؤ بالكلمة التالية.عند القياس حتى الأجهزة الحديثة، يؤدي هذا النموذج (على الرغم من قيودها العديدة) أفضل بكثير مما كان متوقعا عن معايير نموذج اللغة على مستوى Word.يكشف تحليلنا أن NPLM يحقق حيرة أقل من محول الأساس مع سياقات مدخلات قصيرة ولكن تكافح للتعامل مع تبعيات طويلة الأجل.مستوحاة من هذه النتيجة، نقوم بتعديل المحول عن طريق استبدال طبقة انتباهي أول مع طبقة التسلسل المحلية في NPLM، مما يؤدي إلى انخفاض حيرة صغيرة ولكنها ثابتة عبر مجموعات بيانات نمذجة لغة مستوى الكلمات.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا