ترغب بنشر مسار تعليمي؟ اضغط هنا

التصنيف متعدد العاطفة للحصول على كلمات الأغاني

Multi-Emotion Classification for Song Lyrics

514   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

كلمات الأغاني تنقل العديد من المشاعر إلى المستمع وصور بقوة الحالة العاطفية للكاتب أو المغني.يفحص هذه الورقة مجموعة متنوعة من نهج النمذجة لمشكلة تصنيف متعددة العاطفة للأغاني.نقدم DataSet DataSet Edmonds DataSet، وهي كلمات بيانات كلمات مشفخة عن العاطفة من منظور القارئ، وتعليق DataSet of Mihalcea و Stripparava (2012) على مستوى الأغنية.نجد أن النماذج المدربة على مجموعات بيانات الأغنية الصغيرة نسبيا تحقق أداء أفضل بشكل هامشي من بيرت (ديفلين وآخرون)



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

يشكل التعرف التلقائي للأصويات مشكلة صعبة لتطبيقات NLP. في حين أن المتحدثين الأصليين يمكنهم التعامل بشكل حدسي مع تعبيرات متعددة الكلمات التي من الصعب تتبع معاني الكلمات التي تعود معانيها التركيبية إلى دلالات الكلمة الفردية، لا يزال هناك نطاق واسع لتحس ين الأساليب الحسابية. نحن نفترض أن الإنشاءات الاصطلاحية يمكن أن تتم بها شدة تدريجية من عدم التركيز الدلالي، والتحددات الرسمية، وسياق استخدام غير عادي، وإدخال عدد من التدابير اللازمة لهذه الخصائص، وتتألف تدابير تجميع قائمة على العد والتنبؤية مع تدابير السياق (الأمم المتحدة )تشابه. نحن نقيم نهجنا على معيار الذهب المسمى يدويا، مشتقة من كائن من كلمات البوب ​​الألمانية. تحقيقا لهذه الغاية، نطبق مصنف غابات عشوائي لتحليل المساهمة الفردية للميزات للكشف عن التعابير تلقائيا، ودراسة المفاضلة بين الاستدعاء والدقة. أخيرا، نقوم بتقييم المصنف في مجموعة بيانات مستقلة من التعابير المستخرجة من قائمة التعابير في ويكيبيديا، وتحقيق الدقة الحديثة.
تصف هذه الورقة مساهمتنا في المهمة المشتركة Wassa 2021 بشأن التنبؤ بالمساءات وتصنيف العاطفة.كان الهدف الواسع لهذه المهمة هو نموذج درجة التعاطف، ونتيجة استغاثة والمستوى العام للعاطفة للمقال مكتوب استجابة لمقال الصحف المرتبطة بالأذى لشخص ما.لقد استخدمنا نموذج Electra بوفرة ونهج التعلم العميق المتقدمة أيضا مثل التعلم متعدد المهام.بالإضافة إلى ذلك، نحن أيضا الاستفادة من تقنيات تعلم الآلة القياسية مثل الكفر.يحقق نظامنا معامل ارتباط بيرسون من 0.533 في المهمة الفرعية الأولى ونتيجة ماكرو F1 من 0.5528 على المهمة الفرعية الثانية.احتلنا المرتبة الأولى في مهمة تصنيف العاطفة الفرعية والثالث في مهمة التنبؤ بالتعاطف.
تصنيف العاطفة متعددة العلامات هو مهمة مهمة في NLP وهي ضرورية للعديد من التطبيقات.في هذا العمل، نقترح نهج التسلسل إلى العاطفة (SEQ2EMO)، الذي نماذج ضمنيا علاقات العاطفة في وحدة فك ترميز ثنائية الاتجاه.تظهر التجارب في مجموعات بيانات Semeval'18 و Goemot ions أن نهجنا تتفوق على الأساليب الحديثة (دون استخدام البيانات الخارجية).على وجه الخصوص، يتفوق SEQ2EMO على نهج السلسلة ذات الصلة الثنائية (BR) وسلسلة التصنيف (CC) في بيئة عادلة.
يعمل المصنف الموجود في مهام الحوسبة العاطفية متعددة الوسائط، مثل التعرف على العاطفة والتعرف على الشخصية، عموما خط أنابيب ذات مرحلتين من خلال أول استخراج تمثيلات ميزة لكل طريقة واحدة مع الخوارزميات المصنوعة يدويا، ثم أداء التعلم المنتهي مع الميزات الم ستخرجة. ومع ذلك، يتم إصلاح الميزات المستخرجة ولا يمكن ضبطها بشكل جيد على المهام المستهدفة المختلفة، والعثور على ميزة خوارزميات الاستخراج يدويا لا تعميم أو مقياس جيدا لمهام مختلفة، والتي يمكن أن تؤدي إلى الأداء دون الأمثل. في هذه الورقة، نقوم بتطوير نموذج طرف بالكامل يربط المرحلتين وتحسينها بشكل مشترك. بالإضافة إلى ذلك، نقوم بإعادة هيكلة مجموعات البيانات الحالية لتمكين التدريب الكامل للنهاية. علاوة على ذلك، لتقليل النفقات الحاسوبية النماذج المحسوبة بالنماذج الطرفية إلى النهاية، نقدم آلية اهتمامية متناثرة عبر مشروط لاستخراج الميزة. تظهر النتائج التجريبية أن طرازنا الناتج الكامل ينفج بشكل كبير يتفوق بشكل كبير النماذج الحالية للحالة القائمة على خط أنابيب الطورين. علاوة على ذلك، من خلال إضافة اهتمام متناثر عبر الوسائط، يمكن لنموذجنا الحفاظ على الأداء مع حوالي نصف حساب أقل في جزء استخراج الميزة من النموذج.
توضح نظريات التقييم كيف يؤدي التقييم المعرفي للحدث إلى عاطفة معينة. على النقيض من نظريات المشاعر الأساسية أو التأثير (التكافؤ / الإثارة)، لم تتلق هذه النظرية الكثير من الاهتمام في معالجة اللغة الطبيعية. ومع ذلك، في علم النفس، ثبت أن سميث وإلسنثورث (1 985) أظهر أن أبعاد التقييم الاهتمام، اليقين، الجهد المتوقع، والمسؤولية، والمسؤولية السيطرة والتحكم الظرفي تميز بين (على الأقل) 15 فصول العاطفة. ندرس استراتيجيات توضيحية مختلفة لهذه الأبعاد، استنادا إلى كوربوس الفنية التي تركز على الأحداث (Troiano et al.، 2019). نقوم بتحليل اثنين من إعدادات التوضيحية اليدوية: (1) إظهار النص للتعليق أثناء إخفاء ملصق العاطفة ذوي الخبرة؛ (2) الكشف عن العاطفة المرتبطة بالنص. يتيح الإعداد 2 أن يقوم المعلقون بتطوير حدس أكثر واقعية لهذا الحدث الموصوفين، في حين أن الإعداد 1 هو إجراء شروح مزيد من التعريفي، والاعتماد بحت على النص. نقوم بتقييم هذه الاستراتيجيات بطريقتين: من خلال قياس اتفاقية Insine-Annotator وضبط روبرتا للتنبؤ بمتغيرات التقييم. تظهر نتائجنا أن معرفة العاطفة تزيد من موثوقية المعلقين. علاوة على ذلك، نقوم بتقييم استراتيجية وضع العلامات المستندة إلى القواعد التلقائية بحتة (تقييم الاستنتاج من فصول العاطفة المشروحة). يؤدي التدريب على الملصقات المعينة تلقائيا إلى أداء تنافسي من المصنف لدينا، حتى عند اختباره في التوضيحية اليدوية. هذا مؤشر أنه قد يكون من الممكن إنشاء Corpa Corpora تلقائيا لكل مجال موجودا للعاطفة الموجودة بالفعل.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا