تعد التعميم المرتبطة مشكلة معروفة في الكشف عن الموقف (SD)، حيث تميل النظم إلى الأداء بشكل سيئ عند تعرضها للأهداف غير المرئية أثناء التدريب.بالنظر إلى أن شرح البيانات باهظ الثمن وتستغرق وقتا طويلا، فإن إيجاد طرق للاستفادة من البيانات غير المستقرة غير المسبقة يمكن أن تقدم فوائد كبيرة.في هذه الورقة، نطبق إطارا إشرافه ضعيفا لتعزيز التعميم الشامل من خلال البيانات المشروحة بتهمة التوحيد.نحن نركز على Twitter SD وإظهار تجريبيا من أن دمج البيانات الاصطناعية مفيدة للتعميم الشامل، مما يؤدي إلى تحسينات كبيرة في الأداء، مع المكاسب في درجات F1 تتراوح بين +3.4 إلى +5.1.
Cross-target generalization is a known problem in stance detection (SD), where systems tend to perform poorly when exposed to targets unseen during training. Given that data annotation is expensive and time-consuming, finding ways to leverage abundant unlabeled in-domain data can offer great benefits. In this paper, we apply a weakly supervised framework to enhance cross-target generalization through synthetically annotated data. We focus on Twitter SD and show experimentally that integrating synthetic data is helpful for cross-target generalization, leading to significant improvements in performance, with gains in F1 scores ranging from +3.4 to +5.1.
المراجع المستخدمة
https://aclanthology.org/
الهدف من الكشف عن الموقف هو تحديد ما إذا كان مؤلف النص مؤلفا مؤلا، محايد أو ضد هدف محدد. على الرغم من التقدم الجوهري في هذه المهمة، فإن إحدى التحديات المتبقية هي ندرة التعليقات التوضيحية. يستخدم تكبير البيانات بشكل شائع لمعالجة ندرة التوضيحية عن طريق
يحدد اكتشاف الموقف ما إذا كان مؤلف النص مؤهلا لصالح أو محايد هدف معين ويوفر رؤى قيمة في أحداث مهمة مثل تقنين الإجهاض. على الرغم من التقدم الكبير في هذه المهمة، فإن أحد التحديات المتبقية هو ندرة التعليقات التوضيحية. علاوة على ذلك، ركزت معظم الأعمال ال
كانت الانتخابات الأمريكية 2020، أكثر من أي وقت مضى، تتميز بحملات وسائل التواصل الاجتماعي والاتهامات المتبادلة. نحن نحقق في هذه الورقة إذا كان هذا يتجلى أيضا في الاتصالات عبر الإنترنت من مؤيدي المرشحين بايدن وترامب، من خلال نطق التواصل البغيض والهجومي
تعرض نماذج اللغة متعددة اللغات أداء أفضل لبعض اللغات مقارنة بالآخرين (Singh et al.، 2019)، وعدد العديد من اللغات لا تستفيد من تقاسم متعدد اللغات على الإطلاق، من المفترض أن تكون نتيجة تجزئة متعددة اللغات (بيزال O وآخرون)2020).يستكشف هذا العمل فكرة تعل
في هذه الورقة، نقدم مجموعة بيانات جديدة تستند إلى Twitter للكشف عن السيبراني وإساءة استخدام عبر الإنترنت.تضم هذه البيانات التي تضم 62،587 تغريدات، تم الحصول على هذه البيانات من تويتر باستخدام شروط استعلام محددة تهدف إلى استرداد تغريدات مع احتمالات عا